Topic 2.1:**HETEROSCEDASTICITY** AND AUTOCORRELATION

Luca Salvadori UAB, BSE, TARC, IEB

Academic Year 22-23

1. Heteroscedasticity and autocorrelation

In topic 1, we reviewed the linear regression model Y_t : where: • t = 1, 2, ..., T

$$X_t = (1, X_{2t}, \dots, X_{kt})'$$

• $\beta = (1, \beta_2, ..., \beta_k)'$

... and where the classic HPs hold:

- 1. $X_{1,\ldots}X_{k}$ and the Yare **iid**.
- 2. there is not perfect multicollinearity; rg(X) = k:
- 3. *Xt* and *ut* have nonzero finite fourth order moments.
- 4. $E(u_t/X) = 0 \Rightarrow E(u_t) = 0, t = 1, 2, ..., T$
- 5. $Var(u) = E(uu') = \sigma^2 I_T$.
 - $Var(u_t) = E(u^2) = \sigma^2$, t = 1, 2, ..., T (homoscedasticity)
 - $Cov(u_t, u_s) = E(u_t, u_s) = 0, \forall t \neq s (u_t \text{ not serially correlated})$
- 6. Normality: $u \sim N(0, \sigma^2 I); u_t \sim N(0, \sigma^2)$

$$Y_t = X_t^{'}\beta + u_t,$$

A

1. Heteroscedasticity and autocorrelation

In this topic we will see the consequences of relaxing assumption 5 (and 1)

• **HETEROSCEDASTICITY:** $\exists i, j$ such that $V(u_i|X_i) \neq V(u_j|X_j)$,

• **AUTOCORRELATION:** $\exists i,j$ such that $Cov(u_iu_j|X) \neq 0$,

1.1 Heteroscedasticity

Specifically, let's start with the estimation of the regression model with heteroskedastic errors but without the presence of serial autocorrelation, that is to say, assumptions 2-4 are verified while 5 becomes:

 $var(u_t) = E(u_t^2) = \sigma^2 \omega_t, t = 1, 2, ..., T$ heteroscedasticity $cov(u_t, u_s) = E(u_t u_s) = 0, \forall t \neq s$ u_i not serially correlated $Var(u) = E(uu') = \sigma^2 \Omega$, where $\Omega = \begin{bmatrix} \omega_1 & 0 & \dots & 0 \\ 0 & \omega_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & (\omega_T) \end{bmatrix}$

4

1.1 Heteroscedasticity

Estimation by OLS in the presence of heteroscedasticity:

1. The OLS estimator is unbiased: $E(\widehat{\beta}) = \beta$

2. The variance is:
$$Var(\widehat{\beta}|X) = \sigma^2 (X'X)^{-1} \left(\sum_{t=1}^T \omega(X_t) X_t X_t'\right) (X'X)^{-1}$$

1.1 Heteroscedasticity

Estimation by OLS in the presence of heteroscedasticity:

$$\begin{aligned} Var(\widehat{\beta}|X) &= E\left[(\widehat{\beta} - E(\widehat{\beta}|X))(\widehat{\beta} - E(\widehat{\beta}|X))'|X\right] &= E\left[(\widehat{\beta} - \beta)(\widehat{\beta} - \beta)'|X\right] \\ &= E\left[(X'X)^{-1}X'uu'X(X'X)^{-1}|X\right] = (X'X)^{-1}X'E(uu'|X)X(X'X)^{-1} \\ &= \sigma^{2}(X'X)^{-1}X'\Omega X(X'X)^{-1} \end{aligned}$$

where

$$\begin{aligned} X'\Omega X &= \begin{bmatrix} X_1, X_2, \dots, X_T \end{bmatrix} \begin{bmatrix} \omega(X_1) & 0 & \cdots & 0 \\ 0 & \omega(X_2) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \omega(X_T) \end{bmatrix} \begin{bmatrix} X'_1 \\ X'_2 \\ \vdots \\ X'_T \end{bmatrix} \\ &= \begin{bmatrix} \omega(X_1)X_1, \ \omega(X_2)X_2, \ \dots & \omega(X_T)X_T \end{bmatrix} \begin{bmatrix} X'_1 \\ X'_2 \\ \vdots \\ X'_T \end{bmatrix} = \left(\sum_{t=1}^T \omega(X_t)X_t X_t' \right) \end{aligned}$$

1.1 Heteroscedasticity

Estimation by OLS in the presence of heteroscedasticity:

Given that $Var(\widehat{\beta}|X) \neq \sigma^2(X'X)^{-1}$

• Therefore, $\widehat{\sigma}^2(X'X)^{-1}$ is not an appropriate estimator for Var ($\widehat{\beta}_{OLS}$) As a consequence of this result, the tests that we saw when the classical assumptions are met and that they were based on $Var(\widehat{\beta}_{OLS}) = \widehat{\sigma}^2(X'X)^{-1}$ are not valid when the errors are heteroskedastic.

 Also, when the errors are heteroskedastic the OLS estimator is not the best linear unbiased estimator (T. Gauss-Markov does not hold).

1.1 Heteroscedasticity

Asymptotic properties:

Consistency: if the observations are iid, and assumptions (a) and (c) hold, then the OLS estimator is consistent.

(a) $E(u_t|X_t) = 0 \Leftrightarrow E(Y_t|X_t) = X'_t\beta$

(c) $\Sigma = E(X_t X'_t)$ is positive definite

Asymptotic normality: if the observations are iid, and the assumptions (a) and (c) hold, then

 $\sqrt{T}(\widehat{\beta} - \beta) \to_d N(0, \Sigma^{-1}(\sigma^2 \Psi) \Sigma^{-1}) \qquad \Psi = E(\omega(X_t) X_t X_t')$

The OLS estimator **is not asymptotically efficient**, since the assumption of homoscedasticity is not verified.

1.1 Heteroscedasticity

TYPE OF HETEROSCEDASTICITY: possible formulations and examples

$$Var(u_t) = \sigma^2 X_{jt}^{\alpha}$$
$$Var(u_t) = (\alpha' Z_t)^2$$
$$Var(u_t) = \exp(\alpha' Z_t)$$
$$Var(u_t) = (\alpha' Z_t)$$

 X_J is a model regressor Z_t is a onecolumn vector of observed variables

$$\sigma_{t}^{2} = \sigma^{2} + \alpha i Y t \text{ with } \alpha^{1} > 0$$

$$\sigma_{t}^{2} = Z'_{t} \alpha_{0} \text{ with } \alpha_{0} > 0$$

$$\sigma_{t}^{2} = (\sigma + Z'_{t} \alpha)^{2} \text{ with } \alpha > 0$$

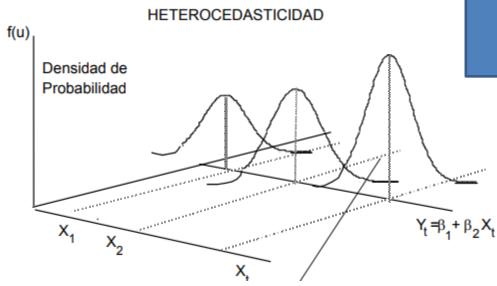
$$\sigma_{t}^{2} = \alpha_{0} + \alpha_{1} \sigma_{t-1}^{2}$$

$$\sigma_{t}^{2} = \sum_{j=1}^{k} \alpha_{j} I_{jt} \text{ with } \alpha_{j} > 0$$

1.1 Heteroscedasticity

EXAMPLE I:

Graphically



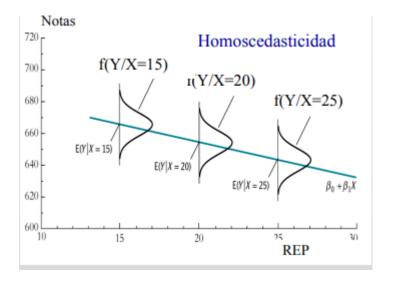
In this case, the variance decreases as the value of the independent variable increases

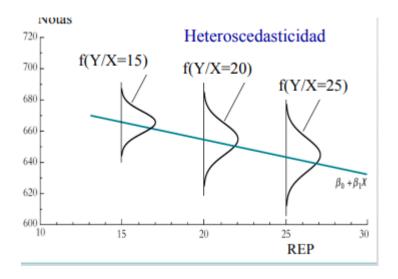
A

1.1 Heteroscedasticity

EXAMPLE II:

Graphically





11

1.1 Heteroscedasticity

EXAMPLE III: Given the regression

 $Y_{ij} = \beta_1 + \beta_2 X_{ij} + u_{ij}$ $i = 1, \dots, N; j = 1, \dots, n_i$

where: $E(u_{ij}) = 0, \ E(u_{ij}^2) = \sigma_u^2 \ y \ E(u_{ij}u_{kl}) = 0 \ \forall i \neq k, j \neq l,$

We can show that: $\bar{Y}_{i.} = \beta_1 + \beta_2 \bar{X}_{i.} + \bar{u}_{i.}$ i = 1, ..., N where

$$\bar{Y}_{i.} = \frac{\sum_{j=1}^{n_i} Y_{ij}}{n_i} \quad \bar{X}_{i.} = \frac{\sum_{j=1}^{n_i} X_{ij}}{n_i} \quad \bar{u}_{i.} = \frac{\sum_{j=1}^{n_i} u_{ij}}{n_i}$$

presents heteroscedasticity. Let's calculate

$$E(\bar{u}_{i.}) \qquad E(\bar{u}_{i.})^2 \qquad E(\bar{u}_{i.}\bar{u}_{k.})$$

1.1 Heteroscedasticity

EXAMPLE III: Given the regression

 $Y_{ij} = \beta_1 + \beta_2 X_{ij} + u_{ij}$ $i = 1, \dots, N; j = 1, \dots, n_i$

where: $E(u_{ij}) = 0, \ E(u_{ij}^2) = \sigma_u^2 \ y \ E(u_{ij}u_{kl}) = 0 \ \forall i \neq k, j \neq l,$

$$E(\bar{u}_{i.}) = E\left(\frac{\sum_{j=1}^{n_i} u_{ij}}{n_i}\right) = \frac{\sum_{j=1}^{n_i} E(u_{ij})}{n_i} = 0$$

$$E(\bar{u}_{i.})^2 = E\left(\frac{\sum_{j=1}^{n_i} u_{ij}}{n_i}\right)^2 = E\left(\frac{\sum_{j=1}^{n_i} u_{ij}^2 + \sum_{j\neq l}^{n_i} u_{ij}u_{ll}}{n_i^2}\right) = \frac{\sum_{j=1}^{n_i} E(u_{ij}^2) + \sum_{j\neq l}^{n_i} E(u_{ij}u_{ll})}{n_i^2} = \frac{\sigma_u^2}{n_i}$$

$$(\bar{u}_{i.}\bar{u}_{k.}) = E\left(\frac{\sum_{j=1}^{n_i} u_{ij} \sum_{l=1}^{n_k} u_{kl}}{n_i^2}\right) = E\left(\frac{\sum_{j=1}^{n_i} \sum_{l=1}^{n_k} u_{ij}u_{kl}}{n_i^2}\right) = \frac{\sum_{j=1}^{n_i} \sum_{l=1}^{n_k} E(u_{ij}u_{kl})}{n_i^2} = 0$$

• We see that $E(\bar{u}_{i.})^2 = \sigma_u^2/n_{i.}$ is not constant.

• Variance-covariance matrix?

E

1.1 Heteroscedasticity

EXAMPLE IV:

Given the following model $Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$, $u_i \sim N(0, \sigma_n^2)$ Suppose by mistake we specify the model $Y_i = \beta_1 + \beta_2 X_{2i} + e_i$

Therefore $e_i = \beta_3 X_{3i} + u_i$ presents heteroscedasticity since

 $E(e_i)^2 = \sigma_u^2 + \beta_3^2 X_{3i}^2$

Variance-covariance matrix?

1.1 Heteroscedasticity

Example I:

Given the following model, consumption (Y_i) and income (X_i)

 $Y_i = \beta_1 + \beta_2 X_i + u_i \quad (i = 1, \dots, n)$

being

 $Var(ui) \equiv \sigma^2_i = \alpha_1 + \alpha_2 Xi$

Variance-covariance matrix?

1.1 Heteroscedasticity

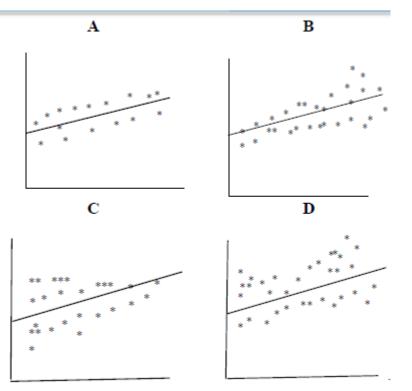
A. HETEROSCEDASTICITY DETECTION:

- Graphically:
 - \checkmark Graph of the variables
 - ✓ Graph of the residuals
 - ✓ Graph of the squared residuals
- Hypothesis test
 - ✓ Golfeld-Quandt test. GQ
 - ✓ Breusch-Pagan test. BP
 - \checkmark White test.

1.1 Heteroscedasticity

A. HETEROSCEDASTICITY DETECTION: Graphically:

 \checkmark Graph of the variables



CASE A: homoscedastic

CASE B: increasing heteroscedasticity

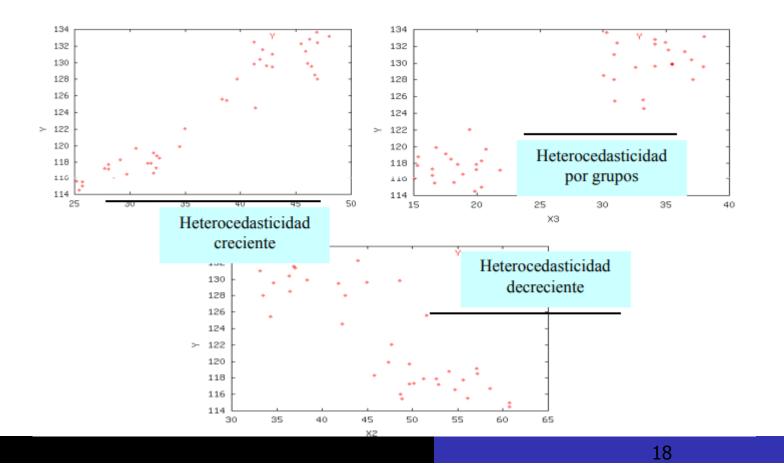
CASE C: decreasing heteroscedasticity

CASE D: squared heterocedasticity, it increases while stepping away from the mean on both sides.

1.1 Heteroscedasticity

A. HETEROSCEDASTICITY DETECTION: Graphically:

✓ With respect to independent variables (X_i):

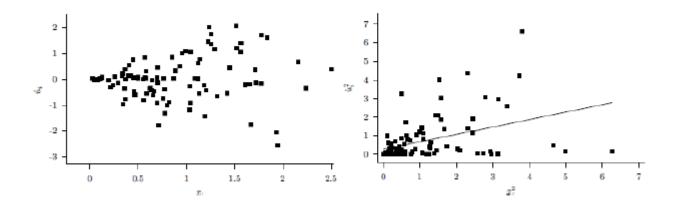


1.1 Heteroscedasticity

A. HETEROSCEDASTICITY DETECTION: Graphically:

 \checkmark Residuals graph:

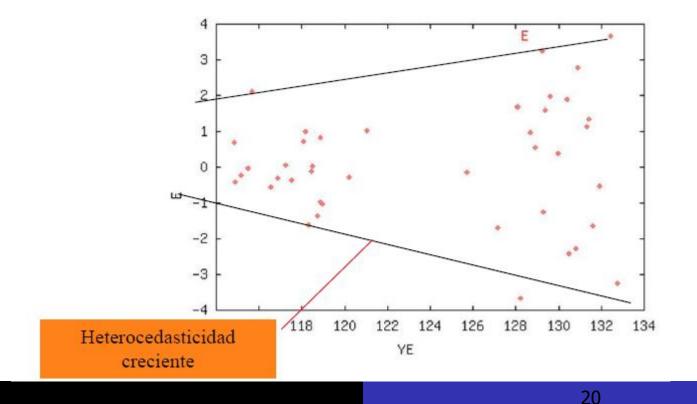
Scatter plot of \hat{u}_i vs x_i and of \hat{u}_i^2 vs x_i^2



1.1 Heteroscedasticity

A. HETEROSCEDASTICITY DETECTION: Graphically:

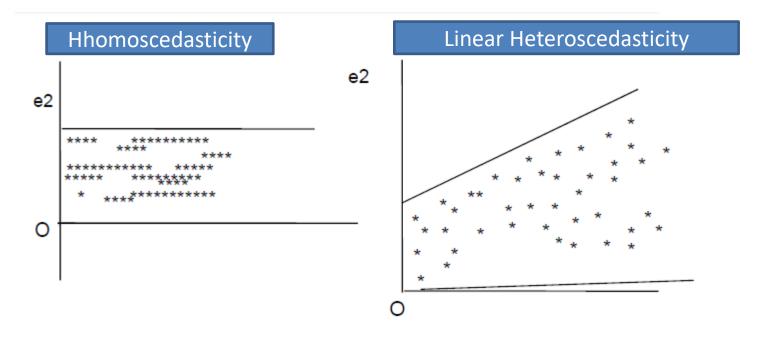
✓ Graph of the residuals vs y_i



1.1 Heteroscedasticity

A. HETEROSCEDASTICITY DETECTION: Graphically:

 \checkmark Graph of squared residuals



1.1 Heteroscedasticity

A. HETEROSCEDASTICITY DETECTION:

- Hypothesis testing
 - ✓ Golfeld-Quandt test. G-Q
 - ✓ Breusch-Pagan test. BP
 - \checkmark White test.

Consider the model:

 $y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i, \quad i = 1, \dots, n$

A

1.1 Heteroscedasticity

A. HETEROSCEDASTICITY DETECTION: hypothesis testing

✓ Golfeld-Quandt test. G-Q

The test of Goldfeld-Quandt should be applied when we suspect that the variation of the error increases with the values of a known variable Z.

$$\sigma_i^2 = \sigma_u^2 Z_i$$

The test would be:

$$H_0: \sigma_i^2 = \sigma_u^2$$

$$H_1: \sigma_i^2 = \sigma_u^2 Z_i \qquad i = 2, \dots, p$$

H_{or}:Homoscedasticity

H₁:Heteroscedasticity

1.1 Heteroscedasticity

A. HETEROSCEDASTICITY DETECTION: hypothesis testing

Golfeld-Quandt test. G-Q

Steps of the test:

- 1. Identifying the variable causing heteroscedasticity, let's say Z.
- 2. Order the table of data by increasing values of Z
- 3. Split the table of data in subsamples. The central subsample with m observations, and the others two subsamples with (n m)/2 observations. Practically $m \approx n/3$
- 4. Skip the *m* central observations, and estimate by OLS the regression in each subsample.
- 5. Calculate the RSS_1 and RSS_2 . We reject H₀ if $RSS_2 > RSS_1$
- 6. Calculate the test statistics:

$$F = \frac{SCR_2}{SCR_1} \sim F \frac{n-m}{2} - k, \frac{n-m}{2} - k$$

7. We reject H₀ if
$$F > F_{\frac{n-m}{2}-k,\frac{n-m}{2}-k,\alpha}$$

1.1 Heteroscedasticity

A. HETEROSCEDASTICITY DETECTION: hypothesis testing

✓ Breush-Pagan test, BP

Consider the following model:

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$

With linear heteroscedasticity: $E(u^2) = \sigma^2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + ... + \delta_k x_k$ Which originates from the model $u^2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + ... + \delta_k x_k + v$ Where E(v/X) = 0

Hypothesis to be tested:

$$H_0: \delta_1 = \delta_2 = \ldots = \delta_k = 0$$
 $H_{or}:Homoscedasticit $H_1: \delta_i \neq 0$ for any i=1,...,k $H_1:Heteroscedasticit$$

1.1 Heteroscedasticity

A. HETEROSCEDASTICITY DETECTION: hypothesis testing ✓ Breush-Pagan test, BP

• We use the residuals to estimate the errors in the last equation:

 $\hat{u}^2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \ldots + \delta_k x_k + error$

• let's make oan *F-test* of joint significance of the parameters in this model. The statistics in this case is:

$$F = \frac{R_{\hat{u}}^2/k}{(1 - R_{\hat{u}}^2)/(n - k - 1)} \sim F_{k, n - k - 1}$$

- We reject H₀ if $F > F_{k, n-k-1, \alpha}$
- Alternatively *LM* equivalent test (blackboard)

1.1 Heteroscedasticity

HETEROSCEDASTICITY DETECTION: hypothesis testing

✓ Breush-Pagan test, BP

<u>Steps:</u>

1.Estimate by OLS the equation

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$

2.Get the residuals $\hat{u}_{\rm i}$ and estimate by OLS the model

$$\hat{u}^2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \ldots + \delta_k x_k + error$$

3. Calculate the F-statistic

$$F = \frac{R_{\hat{u}}^2/k}{(1 - R_{\hat{u}}^2)/(n - k - 1)} \sim F_{k, n - k - 1}$$

4. We reject H₀ if $F > F_{k, n-k-1, a}$

1.1 Heteroscedasticity

HETEROSCEDASTICITY DETECTION: hypothesis contrast

✓ White test

Consider the following model: $y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i, \quad i = 1, \dots, n$

Hypothesis to be tested $H_0: E(u_i^2) = \sigma_u^2$

$$H_1: E(u_i^2) = \sigma_i^2$$
 $H_1:$ Heteroscedasticity

H_{or}:Homoscedasticity

Steps:

1. Estimate by OLS and get the residuals \hat{u}_i

 $y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i, \quad i = 1, \dots, n$

2. Estimate by OLS, the following auxiliary regression and calculate R^2

 $\hat{u}_{i}^{2} = \alpha_{1} + \alpha_{2}X_{2i} + \alpha_{3}X_{3i} + \alpha_{4}X_{2i}^{2} + \alpha_{5}X_{3i}^{2} + \alpha_{6}X_{2i}X_{3i} + e_{i}$

1.1 Heteroscedasticity

HETEROSCEDASTICITY DETECTION: hypothesis testing ✓ Test White

3. Calculate test statistic:

$$LM = nR^2$$

distributed as a $X^{2}(p-1)$, (i.e. auxiliary regression degrees of freedom)

4. We reject H₀ if $LM > \chi^{2}_{(p-1),\alpha}$

1.1 Heteroscedasticity

EXAMPLES: hypothesis testing

✓ Test GQ

Let B be the following model $y_i = \beta_1 + \beta_2 V_i + u_i$ i=1,...,20The estimate for OLS is:

> Modelo 1: MCO, usando las observaciones 1-20 Variable dependiente: B

const V	Coeficiente 10,2229 0,0638456	Desv. Típica 1,35823 0,0112223	Estadístico t 7,5267 5,6892	Valor p <0,00001 0,00002	***
Media de la vble. de Suma de cuad. resid			de la vble. dep. de la regresión		51550 89987

R-cuadrado	0,642619	R-cuadrado corregido	0,622765
F(1, 18)	32,36647	Valor p (de F)	0,000021
Log-verosimilitud	-37,81959	Criterio de Akaike	79,63917
Criterio de Schwarz	81,63063	Crit. de Hannan-Quinn	80,02792

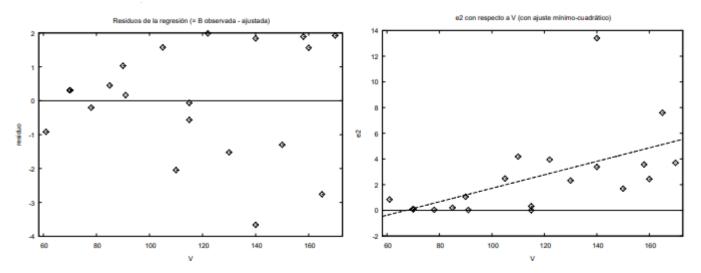
1.1 Heteroscedasticity

EXAMPLES: hypothesis testing

✓ Test GQ

Heteroscedasticity detection:

• Graphically:



We note that if sales increase, the dispersion of the residuals also increases, indicating the presence of heteroscedasticity

1.1 Heteroscedasticity

EXAMPLES: hypothesis testing

✓ TestGQ

Heteroscedasticity detection:

• GQ test:

$$H_0: \sigma_i^2 = \sigma_u^2$$

$$H_1: \sigma_i^2 = \sigma_u^2 Z_i$$

H₀:Homoscedasticity

H₁:Heteroscedasticity

- 1. We sort the sample in ascending order by the variable Vi
- 2. We divide the sample into three parts, $20/3 \approx 6$
- 3. We estimate by OLS the 1st and 3rd sample
- 4. We calculate the test statistic

GQ= SQR2/SQR1~ F_{α} (n-q) If α =5%; F(5.5)=5.05033 Therefore 29.043>5.05033 We reject H₀

1.1 Heteroscedasticity

EXAMPLES: hypothesis testing

✓ TestGQ

1st subsample

Modelo 1: MCO, usando las observaciones 1-7 Variable dependiente: B

	Coeficiente	Desv. Típica	Estadístico t	Valor p	
const	7,5343	1,34079	5,6193	0,00247	***
V	0,100477	0,0170653	5,8878	0,00201	***

Media de la vble. dep.	15,35714	D.T. de la vble. dep.	1,224550
Suma de cuad. residuos	1,134109	D.T. de la regresión	0,476258
R-cuadrado	0,873948	R-cuadrado corregido	0,848738
F(1, 5)	34,66614	Valor p (de F)	0,002009
Log-verosimilitud	-3,562349	Criterio de Akaike	11,12470
Criterio de Schwarz	11,01652	Crit. de Hannan-Quinn	9,787616

1.1 Heteroscedasticity

EXAMPLES: hypothesis testing

✓ TestGQ

3rd subsample

Modelo 2: MCO, usando las observaciones 14-20 (n = 7) Variable dependiente: B

	Coeficiente	Desv. Típica	Estadístico t	Valor p
const	1,15735	13,7885	0,0839	0,93636
V	0,121975	0,0889012	1,3720	0,22841

Media de la vble. dep.	20,02857	D.T. de la vble. dep.	2,748766
Suma de cuad. residuos	32,93469	D.T. de la regresión	2,566503
R-cuadrado	0,273515	R-cuadrado corregido	0,128218
F(1, 5)	1,882452	Valor p (de F)	0,228412
Log-verosimilitud	-15,35273	Criterio de Akaike	34,70545
Criterio de Schwarz	34,59727	Crit. de Hannan-Quinn	33,36837

1.1 Heteroscedasticity

EXAMPLES: hypothesis testing

✓ White test

Consider a model where you want to study the relationship between employment and GDP. $GDP = \beta_1 + \beta_2 empl_i + u_i$

Test: H₀:homecedasticity H₁:heteroscedasticity

Test statistic:
$$\chi^2_{exp} = nR^2 \rightarrow \chi^2_{p-1}$$

Where R2 is the coefficient of determination obtained from an auxiliary regression of the squared residuals on the explanatory variables, their squares and their cross products.

1.1 Heteroscedasticity

EXAMPLES: hypothesis testing

✓ White test

We get:

***********************			**************	**********
White Heteroskedasticity	Test:			
************************************			****************	**********
F-statistic	3.698591	· · · · · · · · · · · · · · · · · · ·	0.049458	
Obs*R-squared	5.944912	Probability	0.051177	
***************************************		*************		*********
Test Equation:				
LS // Dependent Variable :	is RESID^2			
Sample: 1 18				
Included observations: 18	В			
		ETTELETICET		Prob.
Variable	Coefficient	Sta. Error	t-Statistic	Prob.
	2 028.11	2.39E+11	-1.266662	0.2246
C	-3.03E+11		2.195207	0.0443
EMPLEO	1.44E+09	302565.4		0.1109
EMPLEO ²	-512657.3	302303.4	-1.094508	0.1105
D among	0.330273	Mean depend	ont var	2.52E+11
R-squared Adjusted R-squared	0.240976	S.D. depend		5.29E+11
S.E. of regression	4.61E+11	Akaike info		53.86446
Sum squared resid	3.19E+24	Schwarz cri		54.01286
Log likelihood	-507.3210	F-statistic		3.698591
Durbin-Watson stat	1.230263	Prob(F-stat		0.049458

1.1 Heteroscedasticity

EXAMPLES: hypothesis testing

✓ White test

Test statistic: NR²=18x0.330273=5.944

So:

 $No^2 > \chi^2$ (p-1)=0.011778. We reject H₀

1.1 Heteroscedasticity

B. HETEROSCEDASTICITY TREATMENT

SOLUTIONS:

- Estimate by OLS and estimate an appropriate matrix of variance-covariance
- Estimate by Generalized Least Squares: GLS
- Estimate by Feasible Generalized Least Squares: FGLS

1.1 Heteroscedasticity

B. HETEROSCEDASTICITY TREATMENT

- A first solution to the problem: use OLS and estimate a variance-covariance matrix robust to HET
- When the errors are heteroscedastics, the matrix $var_w(\hat{\beta}_{OLS})$ is an appropriate estimator for the variance/covariance matrix of $\hat{\beta}_{OLS}$. It is called White's estimator, and allows us to make valid inference once we have estimated the model by OLS without the need to specify the type of heteroscedasticity.

$$\widehat{Var_W(\widehat{\beta}_{MCO})} = (X'X)^{-1} \widehat{\Sigma_V} (X'X)^{-1}$$

Where $\widehat{\Sigma_V} = \frac{1}{n} \sum X_i X'_i \hat{u}_i^2$ is the estimator of $\Sigma_V \equiv Cov(X_i u_i) = E(X_i X'_i u_i^2)$

• This estimator makes sense, because, with the assumptions 2-4, OLS is consistent to β , thus $\hat{u_i}$ will converge in probability to u_i .

1.1 Heteroscedasticity

B. HETEROSCEDASTICITY TREATMENT

ALTERNATIVE ESTIMATION METHODS:

- **1. Generalized Least Squares: GLS**
- 2. Feasible Generalized Least Squares: FGLS

Given that: $Y = X \beta + v$ where v is distributed as $N(0, \Omega)$

$$\Omega = diag \ (\sigma_1^2 \dots \sigma_T^2) = \begin{pmatrix} \sigma_1^2 & \dots & 0 \\ \vdots & \vdots & \vdots \\ 0 & \dots & \sigma_T^2 \end{pmatrix}$$

1.1 Heteroscedasticity

B. HETEROSCEDASTICITY TREATMENT

1. MQG:

If the matrix Ω is known, the transformation to be applied is:

$$P = \Omega^{-1/2} = \begin{pmatrix} 1/\sigma_1 & 0.... & 0\\ ... & ... & ...\\ 0 & & 1/\sigma_T \end{pmatrix} \quad \text{where } P'P = \Omega^{-1}$$
And the transformation is:
$$\begin{cases} y_t^* = \frac{y_t}{\sigma_t} & t = 1...T\\ x_{jt}^* = \frac{x_{jt}}{\sigma_t} & t = 1...T & j = 0...j \end{cases}$$
being $\hat{\beta}_{MCG} = (X^*X^{*'})^{-1}X^*Y'^* \quad \text{or} \quad \hat{\beta}_{MCG} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}y$

1.1 Heteroscedasticity

GLS, a case specific of known heteroscedasticity: multiplicative constant

Given
$$Y_i = \beta_1 + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i, \quad i = 1, \dots, n$$

where $E(u_i) = 0, E(u_i^2) = \sigma_u^2 \omega_i$ y $E(u_i u_j) = 0 \forall i \neq j$,

Heteroscedastic model, we estimate the model by GLS, $\hat{\boldsymbol{\beta}}_{MCG} = (\mathbf{X}' \mathbf{\Omega}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{\Omega}^{-1} \mathbf{y}$

being $V(\hat{\boldsymbol{\beta}}_{MCG}) = \sigma_u^2 (\mathbf{X}' \mathbf{\Omega}^{-1} \mathbf{X})^{-1}$ $u_i^* = \frac{u_i}{\sqrt{\omega_i}}$

Then:

2.

3.

$$E(u_i^*) = E\left(\frac{u_i}{\sqrt{\omega_i}}\right) = \frac{E(u_i)}{\sqrt{\omega_i}} = 0$$
$$E(u_i^{*2}) = E(\frac{u_i^2}{\omega_i}) = \frac{E(u_i^2)}{\omega_i} = \frac{\sigma_u^2 \omega_i}{\omega_i} = \sigma_u^2$$

$$E(u_i^* u_j^*) = E\left(\frac{u_i u_j}{\sqrt{\omega_i}\sqrt{\omega_j}}\right) = \frac{E(u_i u_j)}{\omega_i \omega_j} = 0 \quad \forall i \neq j$$

 u_i^* meets the basic assumptions

1.1 Heteroscedasticity

GLS, a case specific of known heteroscedasticity: multiplicative constant

Given
$$Y_i = \beta_1 + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i, \quad i = 1, \dots, n$$

the transformed model is:

$$\frac{Y_i}{\sqrt{\omega_i}} = \beta_1 \frac{1}{\sqrt{\omega_i}} + \beta_2 \frac{X_{2i}}{\sqrt{\omega_i}} + \dots + \beta_k \frac{X_{ki}}{\sqrt{\omega_i}} + \frac{u_i}{\sqrt{\omega_i}}, \quad i = 1, \dots, n$$
$$Y_i^* = \beta_1 X_{1i}^* + \beta_2 X_{2i}^* + \dots + \beta_k X_{ki}^* + u_i^*, \quad i = 1, \dots, n$$

If $\Omega^{-1} = \mathbf{P'P} \longrightarrow \hat{\boldsymbol{\beta}}_{MCG} = (\mathbf{X'P'PX})^{-1}\mathbf{X'P'Py}$

1.1 Heteroscedasticity

GLS, a case specific of known heteroscedasticity: multiplicative constant

where $\mathbf{P} = \begin{pmatrix} 1/\sqrt{\omega_1} & 0 & \dots & 0 \\ 0 & 1/\sqrt{\omega_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \\ 0 & 0 & \dots & 1/\sqrt{\omega_n} \end{pmatrix}$

and the transformed data is:

$$\mathbf{Py} = \begin{pmatrix} y_1/\sqrt{\omega_1} \\ y_2/\sqrt{\omega_2} \\ \vdots \\ y_n/\sqrt{\omega_n} \end{pmatrix} \quad \mathbf{y} \quad \mathbf{PX} = \begin{pmatrix} 1/\sqrt{\omega_1} & X_{21}/\sqrt{\omega_1} & \dots & X_{k1}/\sqrt{\omega_1} \\ 1/\sqrt{\omega_2} & X_{22}/\sqrt{\omega_2} & \dots & X_{k2}/\sqrt{\omega_2} \\ \vdots & \vdots & \ddots & \\ 1/\sqrt{\omega_n} & X_{2n}/\sqrt{\omega_n} & \dots & X_{kn}/\sqrt{\omega_n} \end{pmatrix}$$

1.1 Heteroscedasticity

EXAMPLE:

1. Consider the simple regression with heteroscedasticity $Y_i = \beta_1 + \beta_2 X_i + u_i$ where $E(u_i) = 0$, $E(u_i^2) = \sigma_u^2 X_i^2 \ y \ E(u_i u_j) = 0 \ \forall i \neq j$.

Write the transformed model.

2. Consider the simple regression with heteroscedasticity $Y_i = \beta_1 + \beta_2 X_i + u_i$ where $E(u_i) = 0, \ E(u_i^2) = \sigma_u^2 e^{X_i} \ y \ E(u_i u_j) = 0 \ \forall i \neq j.$

Write the transformed model.

1.1 Heteroscedasticity

HETEROSCEDASTICITY TREATMENT 1. FGLS:

If the matrix Ω is unknown, the estimation process needs an additional step. We want to estimate

$$Y_i = \beta_1 + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i, \quad i = 1, \dots, n$$

And we don't know the form of heteroscedasticity. If we suspect that:

$$\sigma_i^2 = \alpha_1 + \alpha_2 Z_{2i} + \dots + \alpha_p Z_{pi} \tag{1}$$

Since we don't know the σ_i^2 we need to estimate the following regression by OLS:

$$\hat{u}_{i}^{2} = \alpha_{1} + \alpha_{2}Z_{2i} + \dots + \alpha_{p}Z_{pi} + e_{i}$$
 (2)

We need to get the $\hat{\alpha}_i$ and substitute them in (1), and we obtain $\hat{\sigma}_i^2$

$$\hat{\sigma}_i^2 = \hat{\alpha}_1 + \hat{\alpha}_2 Z_{2i} + \dots + \hat{\alpha}_p Z_{pi}$$

1.1 Heteroscedasticity

HETEROSCEDASTICITY TREATMENT 1. MQGF:

Once we get $\hat{\sigma}_i^2$, the original model can be transformed in this way

$$\frac{Y_i}{\hat{\sigma}_i} = \beta_1 \frac{1}{\hat{\sigma}_i} + \beta_2 \frac{X_{2i}}{\hat{\sigma}_i} + \dots + \beta_k \frac{X_{ki}}{\hat{\sigma}_i} + \frac{u_i}{\hat{\sigma}_i}, \quad i = 1, \dots, n$$

We estimate by OLS the transformed model and obtain:

$$\widehat{\beta}_{MQGF} = (X'\widehat{\Omega}^{-1}X)^{-1}X'\widehat{\Omega}^{-1}Y$$

