
Econometrics I - R summary
Maite Cabeza-Gutes

February,2021

Contents
1 Introduction to RStudio 3

1.1 Installing RStudio . 3
1.2 RStudio layout . 3
1.3 R as a calculator . 7
1.4 R scripts . 8
1.5 RMarkdown documents . 10

2 Data objects: variables and dataframes 13
2.1 Creating a variable by entering its values . 13
2.2 Creating a dataframe . 17
2.3 Importing data files . 20
2.4 Saving objects in the workspace as R data objects . 25
2.5 Basic data manipulation . 26

3 Simulating random variables 28
3.1 Simulating a discrete random variable . 28
3.2 Simulating a continuos random variable . 28

4 Statistical tables 30
4.1 Statistical tables: t-distribution . 30
4.2 Statistical tables: F -distribution . 31

5 Basic descriptive statistics 32
5.1 Measures of location . 32
5.2 Measures of dispersion . 33
5.3 Measures of shape . 33
5.4 Measures of linear association . 34

6 Graphs using ggplot2 package 35
6.1 Basic structure . 35
6.2 One variable plots: Histograms . 36
6.3 2 variable plots: Scatters . 39

7 Vectors and matrices in R 44
7.1 Creating vectors and matrices using function matrix() . 44
7.2 Matrix Operations . 47

8 Simple regression model: OLS estimation 51
8.1 OLS estimation . 51
8.2 OLS estimation using matrix algebra . 52
8.3 Coefficient of determination . 53
8.4 OLS estimation: standard errors . 53
8.5 OLS estimation using function lm() . 54
8.6 Plotting observations and fitted line . 57

1

9 Simple regression model: inference with t statistic 58
9.1 Significance test of each regressor (t-values, p-values, ∗) . 58
9.2 Confidence intervals . 59

10 Simple regression model: prediction 61
10.1 Point prediction . 61
10.2 Interval prediction . 61

11 Multiple regression model: estimation 62
11.1 OLS estimation . 62
11.2 Googness of fit . 63
11.3 OLS estimation using function lm() . 65
11.4 Calculating variance inflating factors . 69
11.5 Multiple regression estimation: logs, polynomial forms, interaction terms 69

12 Simulating behavior of OLS estimator 71
12.1 Generating a sample from a given data generating process dgp 71
12.2 Monte Carlo experiments . 71

13 Multiple regression model: inference 73
13.1 Statistics for significance test of each regressor (t-values, p-values) 73
13.2 Confidence intervals . 74
13.3 Inference with F statistic using function linearHypothesis() 75

14 Multiple regression model: prediction 76
14.1 Point prediction . 76
14.2 Interval prediction . 77

2

1 Introduction to RStudio

1.1 Installing RStudio
R is an open source language and environment for statistical computing and graphics. RStudio is an IDE
(Integrated Development Environment) that makes working with R much easier. To use RStudio we need to
first install R and then, install RStudio.

• Step 1: Use https://cran.r-project.org/ to install R in your computer.

• Step 2: Use https://www.rstudio.com/products/rstudio/download/#download to install RStudio.

Once they are both installed, only RStudio needs to be launched to start working.

1.2 RStudio layout
1.2.1 Initial layout: 3 windows

• Left window: console or command window.
• Top right window: environment, history tabs.
• Bottom right window: files, plots, packages, help, viewer tabs.

As we shall see, once we introduce R scripts, a fourth window, the Script window, will appear above the
console.

1.2.2 Setting your working directory

• To set your working directory: Use top menu option: Session/Set Working Directory/Choose Directory
to select which folder will act as your working directory in a given session.

• To get information of which folder is set to be your current directory use command getwd(). You can
also use the File tab (bottom-right window) to which folder is set as your working directory.

• For a quick access to the files included in your working directory use Files tab (bottom-right window).
If we click on a file in the working directory it will automatically open if it is a .R file (R script) or
.Rmd (R Markdown). If we click on a R data file (.Rda or RData), we can directly loaded into our
Environment. If click on another type of data file (.xls, .xlsx, .csv,..) we can be easily import it. Finally,
if we click on a .pdf file, it will automatically open in our pre-set pdf reader.

3

https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/#download

1.2.3 Commands

• Once we open RStudio, R is waiting for your commands. A command is an instruction given to your
computer in R programming language.

• Commands can be given by entering them in the console using R language. Some particular commands
can also be entered using RStudio menu.

• The prompt sign (‘>’) in the console indicates that R is waiting for a command.

• After typing a command, we hit the Return key to run it. (Sometimes, information or warning messages
appear in red, even if no error is made. Don’t worry!)

• Use command help() (or, ?) to get help on any command. Example help(remove) (or, ?remove).
An explanation about the command in question appears in the Help tab (bottom-right window).
Alternatively, you can also use the Help tab directly and type the name of the command you need
help with, like ‘remove’ (e.g.), in the corresponding search box.

• Important: R is case-sensitive!

• To clear the console use ctrl+L keys (or the corresponding broom-icon).

• Comments can be added by using hashtag symbol ‘#’. R will ignore anything to the right of a #. The
‘#’ can be written at the beginning of a line of next to a command. Example:

Example 1
log(10) # this command calculates natural log of 10

[1] 2.302585

1.2.4 Objects

• R stores information in so called objects. Everything we generate using commands (variables, new data
sets, statistics, plots,. . .) is stored in R as an object. By now, we will focus on data objects.

• To access a defined object at any point, or use it to define new objects, we need to assign it a name.
This is done using the assignment operator :<- (or =). Careful! The name given can only contain
letters and numbers, but it cannot start with a number. Once the name of a data object is assigned,
the object with its given name appears listed in the Environment tab (top-right window) window.
Example:

#Assign name "a" to scalar 3+7
a<-3+7

• If we want to see the object displayed in the console, we need to call it by typing the assigned name.

a<-3+7
a

[1] 10

4

• Careful: If we define an object that contains 1000 different values, it will not be a good idea to have it
displayed in the console!

• Once a name is assigned to an object, it can be used in other commands. Example:

a<-3+7
b<-2*a
b

[1] 20

• Notice that if we assign the same name to a different object, its original value will be replaced by the
latest expression. Example:

#Now, assign name "a" to 3+6
a<-3+7
a

[1] 10

a<-3+9
a

[1] 12

• A specific, say object A, can be removed from the Environment tab (top-right window), by using
command remove(A), or rm(A), for short. To clear all listed objects use command rm(list=ls())
or the tab broom-icon.

• Not assigning a name to an object: If an object is generated, but we do not assign it a name, the object
will be listed in the console. This is ok, if we are generating object that contain very few values. But, it
is a bad idea, if the object includes a large number of values, as they would be displayed in the console.
Also, if an object is generated without a name, we will not be able to retrieve unless we generate it
again.

• Plots are also stored as R objects. When a plot is generated without assign it a name, it will automatically
be displayed in the Plots tab (bottom-right window). As for data objects, we can also assign a name to
a plot using the assignment operator :<- (or=). Plots can be exported or copied using the corresponding
menu. The corresponding broom icon can be used to clear an undesired plot.

1.2.5 Functions

• A function, in a programming environment, is a set of instructions, or operations, we want to perform
to an object.

• A function is followed by a parentheses. It may or may not include arguments.
• Some initial examples:

Square root
sqrt(9)

[1] 3

5

Generate a sequence of integers from 1 to 10
seq(1:10)

[1] 1 2 3 4 5 6 7 8 9 10

Calculate the mean
Z<-seq(1:10)
mean(Z)

[1] 5.5

R has many functions ready to be used (built-in functions), but any user can create their own. In our course
we will only use predefined functions.

1.2.6 Packages

• There are many built-in functions ready to be used after installing R and RStudio. Many more functions
are available by installing extensions, also known as packages or libraries.

• After installing R/RStudio, you can check the list of packages installed by default by going to Packages
tab (bottom-right window).

• To use the functions included in a given package:

– (1) the package needs to have been installed (only once)

– (2) the package needs to be activated (loaded) during a given RStudio session (i.e., every session).

• To install a package use function install.packages(). Example: to install package ggplot2 (package
we will use in this course for data visualization):

install.packages("ggplot2")

• After installation, the package will be listed in the Packages tab (bottom-right window).

• You will have to install the necessary packages for the course in your personal computer, but not in the
computers on campus. Hence, do not run the install.packages() command in any of the computers in
classroom 24, 25 or 26! All the packages we need have already been installed by authorized personnel.

• If you are unsure whether a package has already been installed and hence, avoid re-installation, use
command:

• To activate a given package, two options available:

– Option 1: Use command library(). Example, to use ggplot2 package in a given session:

– Option 2: locate the package needed using the search box in the Packages tab (bottom-right
window) and tick the corresponding box.

6

• List of packages you will need to install in your personal computer for this course:

– readr
– readxl
– stargazer
– ggplot2
– gridExtra
– car
– rmarkdown
– knitr
– AER
– MASS
– datasets
– utils

1.3 R as a calculator
1.3.1 Basic operators

• Addition : +
• Subtraction: -
• Multiplication: *
• Division: /
• Exponentiation: ˆ

1.3.2 Mathematical functions we will use frequently:

• srqt() (square root)
• log() (natural log)
• exp() (exponential)

1.3.3 Some examples:

• Square root:

a<-121
b<-sqrt(a)
b

[1] 11

• Exponential function:

e<-exp(1)
e

[1] 2.718282

• Logs:

log10(100)

[1] 2

7

e<-exp(1)
log(e)

[1] 1

log(1)

[1] 0

log(0)

[1] -Inf

1.4 R scripts
1.4.1 Using scripts

• A R script is a plain text files that contains a set of command lines written in R code. These scripts
are typically files with extension .R.

• We create R scripts to type a set of commands we wish to run, save it, and use it later on or easily edit
it. We can also open R scripts created by other users.

• The command lines included in a given script can be run one after the other, or all at once.

• After we select to create a new script, or we open an existing one, RStudio will display four windows,
instead of three:

1.4.2 Creating a new R script

• To create a new R script we can use the menu: File/New File/R Script. Alternatively, you can use the
icon with the green + sign (top-left icon in the RStudio window), that displays a drop down menu,
and select R Script.

• Once a new script is opened, a blank file is ready for us to enter the desired commands. Commands
lines are numbered and entered one after the other.

8

• As for the case of the console, comments can be added into a script by using hashtag symbol #. As
explained before, R will ignore anything written to the right of #.

• To run a single command line: place cursor in the desired command line (or highlight the line) and
click at the run icon, located on the top right of the script window. Example:

• To run a group of command lines at once: select the desired command lines (highlight all of them) and
click on the Run icon.

• The command(s) you run in a script will be automatically transferred to the console and executed.
Example:

• To save the script use menu option File/Save. After a script is saved, a file with the given name and .R
extension will be added to your working directory.

1.4.3 Openning an existing R script

• To open an existing script use File/Open file. . . ., which will take you directly to the folder you established
as your working directory. If the file is not located in your working directory, you can browse to locate
it.

• If your file is in the set working directory, it can also be openned by going to the Files tab in the
bottom-right window, and clicking on it.

• Example: Open saved script Script0.R and edit it:

• After running the script, variables generated appear in the Environment tab (top-right window) and
the plot in the PLots tab (bottom-right window).

9

1.5 RMarkdown documents
1.5.1 About R Markdown documents

• R Markdown documents are dynamic documents that combine text, math expressions, R code (i.e., a
set of commands) to run, and the associated output(s).

• Rstudio allow us to create, edit and run R Markdown documents. Packages rmarkdown and knitr
are needed.

• R code is inserted in a R Markdown document inside a so called code chunks. We can include a single
code chunk, or several code chunks distributed along the document.

• Each code chunk can be run individually, using the corresponding run icon (green triangle on the
top-right of the chunk). In this case, the generated output (tables, plots,..) appear just below the code
chunk.

• You can learn more on your own about markdown language, but just as a brief note about text format:
** Use hashtag (#) to indicate beginning of a section, two hashtags (##) to indicate beginning of a
sub-section,. . . . ** Place a word between asterik () to get word in italics* Place a word between two
asterisk () to get word in bold Begin a line with a single asterisk to create a list (itemize)
Place a math expression between 1 ()or2dollarsigns($) to include a math expression.

1.5.2 Creating and saving a R Markdown file

• To create a new R Markdown document use menu option File/New File/ R markdown. Alternatively,
you can use the icon with the green + sign (top-left icon in the RStudio window), that displays a drop
down menu, and select R Markdown. In this course, the basic R Markdown document will always be
provided.

• To save the R Markdown use menu option File/Save. After a R Markdown is saved, a file with .Rmd
extension will be added in your working directory.

• After verifying all code chunks run properly, we can produce a single document, including all the text
and all the outputs. The document generated from a R Markdown file can be saved in different formats:
.doc, .html or .pdf. Important: For this course we will only work with .doc’s. Do not use the pdf option!

10

1.5.3 Working with R Markdown documents: An Example

• Initial document:

• Main parts of an R Markdown file:

Document begins with a header (called the YAML header). This header is placed between 3 dash
symbols (—).

Important: You should only edit text between "" under title, date and author. Do not edit anything
else in the header. That is do not add or remove spaces, neither edit the output specification with in
YAML header.

Below the YAML header you will find a first code chunk label as setup. Please ignore this code. Do not
edit it, neither run it. Leave it as is. ** Rest of the document can be edited as you please.

In this case the document includes a section named Example, a math expression y = 2x, and an R
code chunk ready for R code to be entered.

• We edit this basic document by entering R code in the code-chunk. Example:

11

• Using menu option File/Save we can save the RMarkdown.

• We can use the Knit icon to generate the Word version of our dynamic document.

• After knitting, the Word document opens into Word as a ‘read only’ document in your working directory.

• To further edit the .doc document in Word, you need to close it, and open it again, and proceed as
usual when working with .doc documents. After you are happy with the document, you can save it as a
.pdf copy, if needed.

• File Myfirst.Rmd includes this basic example of what an Rmarkdown document looks like. You should
practice editing and knitting this document in your computer.

12

2 Data objects: variables and dataframes
In this section we will consider two types of data objects: variables (vectors) and collections of variables
organized in two-entry tables (dataframes).

The data to be analyzed needs to be available in our Environment tab (top-right window).

We will always assign a name to the variables and dataframes we create.

2.1 Creating a variable by entering its values
We can create a variable and enter its values using c() function. This function combines the elements we
enter inside the parenthesis to form an object (vector) saved under the name indicated by the assign operator
(<-).

Elements inside can be numeric (integer or not integer), characters , factors or dates. To get information of
the type of variable we can use function class().

Created variables with a name assigned will appear listed in the Environment tab (top-right window). To
view its elements we can just type the name assigned, and the values will be displayed in the console. Careful!
Do not use this option if the variable contains many elements.

Created data objects without a name assigned will not be listed in the Environment tab, but its elements will
automatically be displayed in the console. Again, careful!

2.1.1 Creating a numeric variable:

• Example

Z<-c(2, 4.5, 6, 8, 10.1, 12)
Z

[1] 2.0 4.5 6.0 8.0 10.1 12.0

class(Z)

[1] "numeric"

• Shortcut: to create a variable that includes a sequence of values we can use function seq(). Examples:

a<-seq(1:10)
a

[1] 1 2 3 4 5 6 7 8 9 10

c<-seq(2,5,by=0.5)
c

[1] 2.0 2.5 3.0 3.5 4.0 4.5 5.0

• Shortcut: to create a variable that is a constant (i.e., all its values are the same) we can use function
rep(). Example:

13

d<-rep(1, 4)
d

[1] 1 1 1 1

2.1.2 Creating a variable including characters: Example

W<-c("Student A", "Student B", "Student C", "Student C")
W

[1] "Student A" "Student B" "Student C" "Student C"

class(W)

[1] "character"

2.1.3 Creating a categorical variable (factor)

• To identify a variable as a categorical variable we use the factor() function. The categorical variable
can include two or more categories. Once a variable has been identified as a factor, we can use function
levels() to see the different categories included in that variable. Example:

a<-c("male", "female","female", "male","male","male")
af<-factor(a)
class(af)

[1] "factor"

levels(af) # (levels are organized in alphabetic order!)

[1] "female" "male"

• The labels of a categorical variable can be changed to the usual 0,1 categories. Following the example
above:

#
a<-c("male", "female","female", "male","male","male")
af<-factor(a, labels=c("1","0"))
af

[1] 0 1 1 0 0 0
Levels: 1 0

levels(af)

[1] "1" "0"

class(af)

[1] "factor"

14

• Notice that the categorical variable created defined as a binary variable includes categories “0” and “1”.
These are not treated as numerical (notice they are quoted inside ""). If we want the categorical variable
to be treated as numeric we need to use as.numeric() function. In this case, the categories/levels of
the variable are no longer recognized. Example:

a<-c("male", "female","female", "male","male","male")
af<-factor(a, labels=c("1","0"))
af<-as.numeric(as.character(af))
af

[1] 0 1 1 0 0 0

levels(af)

NULL

class(af)

[1] "numeric"

2.1.4 Creating a time variable

• To create a variable that includes a sequence of dates we use seq(as.Date()) function. For example,
to create a variable named Time including monthly data with first 5 months of 2021:

Time<-seq(as.Date("2021/1/1"), by="month", length=5)
Time

[1] "2021-01-01" "2021-02-01" "2021-03-01" "2021-04-01" "2021-05-01"

class(Time)

[1] "Date"

2.1.5 Information about a variable

• To know the class of the variable use function class() as seen above.

• To know the length (i.e., number of elements) of a variable use function length(). Example:

Z<-c(2, 4.5, 6, 8, 10.1, 12)
length(Z)

[1] 6

• To list all the elements of a given variable we can type its name, as seen in the examples above. Do not
use this option if the length of the variable is large.

• To list the first elements of a given variable use function head(). To view the last elements, use function
tail(). Examples:

15

Z<-seq(1:100)
List the first 6 elements (default)
head(Z)

[1] 1 2 3 4 5 6

List the first 5 elements
head(Z, 5)

[1] 1 2 3 4 5

List the last 6 elements (default)
tail(Z)

[1] 95 96 97 98 99 100

List the first 5 elements
tail(Z, 5)

[1] 96 97 98 99 100

• To list specific elements of a given variable use the selection brackets []. Example:

Z<-seq(1,100)
to list elements from 10 to 15
Z[10:15]

[1] 10 11 12 13 14 15

• To browse the elements of a variable use function View(). The contents of the variable will be opened
in a new tab in the top-left window. You can scroll up and down to see its elements. Example:

Z<-c(2, 4.5, 6, 8, 10.1, 12)
View(Z)

16

2.2 Creating a dataframe
Most of the data we will analyze will be in the form of a dataframe. A dataframe is a two dimensional data
structure, arranged in a table layout containing values (rows for observations and columns for variables).

Variables included in a dataframe need not be of the same type. Some can be numeric (12.5, 2.3, 5,..), others
characters (“Algeria”, “Argentina”, . . .), for example. Each variable in the dataframe is identified by a name.
During a given R session, we can work with several dataframes simultaneously. This is a nice feature as it
will allow us to work with different data sets at the same time.

2.2.1 Creating a dataframe

• Variables that have been generated in a session can be combined into a dataframe using function
data.frame() .

• We will always assign a name to a created dataframe using the assign operator (“<-”). Example:

Z<-c(2,4,6, 8, 10, 12)
W<-2*Z
Data1<-data.frame(Z,W)
Data1

Z W
1 2 4
2 4 8
3 6 12
4 8 16
5 10 20
6 12 24

• After a dataframe is created, it appears listed in our Environment tab. Example:

• New dataframes can be created combining data objects (variables, other dataframes) listed in our
Environment tab (top-right window). Example:

Z<-c(2,4,6, 8, 10, 12)
W<-2*Z
Data1<-data.frame(Z,W)
Data1

Z W
1 2 4
2 4 8
3 6 12
4 8 16
5 10 20
6 12 24

17

Y<-Z-2
Data2<-data.frame(Data1,Y)
Data2

Z W Y
1 2 4 0
2 4 8 2
3 6 12 4
4 8 16 6
5 10 20 8
6 12 24 10

2.2.2 Information about a dataframe

• To know the length (i.e., number of variables/columns) of a dataframe use function length(). Important,
this function, when applied to a variable, gives the number of values it contains. If applied to a dataframe,
it gives us the number of variables/columns included. Example:

Z<-seq(0,50, by=0.25)
W<-2*Z
Data1<-data.frame(Z,W)
length(Data1)

[1] 2

• To know the number of rows of values included for the variables in a given dataframe (i.e., number of
rows) use function nrow(). Example:

Z<-seq(1, 50, by=0.25)
W<-2*Z
Data1<-data.frame(Z,W)
nrow(Data1)

[1] 197

• To know the dimension (i.e., number of rows and columns) included in a given dataframe (i.e., number
of rows) use function dim(). Example:

Z<-seq(1,50, by=0.25)
W<-2*Z
Data1<-data.frame(Z,W)
dim(Data1)

[1] 197 2

18

• To list the names of the variables in a given dataframe (i.e., number of rows) use function names().
Example:

Z<-seq(1,50, by=0.25)
W<-2*Z
Data1<-data.frame(Z,W)
names(Data1)

[1] "Z" "W"

• To list all the elements of the dataframe we can type its name. Once more, do not use this option if the
dataframe includes many elements.

• To list the first elements of a given dataframe use function head(). Example:

Z1<-seq(1,100)
Z2<-2*Z1
Data1<-data.frame(Z1,Z2)
List the first 6 elements (default)
head(Data1)

Z1 Z2
1 1 2
2 2 4
3 3 6
4 4 8
5 5 10
6 6 12

• To view the last elements, use function tail(). Example:

Z1<-seq(1,100)
Z2<-2*Z1
Data1<-data.frame(Z1,Z2)
List the last 6 elements (default)
tail(Data1)

Z1 Z2
95 95 190
96 96 192
97 97 194
98 98 196
99 99 198
100 100 200

• To list selected observations of all variables in given dataframe use selection brackets []. Example:

Z1<-seq(1:100)
Z2<-2*Z1
Data1<-data.frame(Z1,Z2)
List observations from 10 to 12 of Z1 and Z2 (default)

19

Data1[10:12,]

Z1 Z2
10 10 20
11 11 22
12 12 24

• To browse the elements of a variable use function View(). Example: View(Data1). The contents of
dataframe Data1 will be opened as a new tab in the top-left window as a spreadsheet. You can scroll
up and down to see its elements.

2.3 Importing data files
A dataframe can also be created from a given data file that includes variables and observations already
organized as a two-entry table: rows for observations and columns for variables.

Most of the data we will analyze in the course will in .csv format (comma separated values) or excel type
(.xls, .xlsx). To work with a given data file, we need to import it.

Important: All files we would like to work with should be included in our working directory, to avoid having
to give the whole path to locate the file.

2.3.1 Importing a .csv data file (i.e., text type data file)

• To create a data frame from a .csv file we will use function read_csv from the readr package. This
function allows us to import a .csv data file, create a dataframe and name it in a single command.

• Example: import data file Example.csv included in our working directory, create dataframe with its
variables and observations, and name the data frame Wage_data.

library(readr)
Wage_data<-read_csv(file="Example.csv")

Parsed with column specification:
cols(

wage = col_double(),
educ = col_double(),
exper = col_double()

)

• Notice that running this command creates the dataframe and provides us information (in red) of the
types of variables included. That is if the variable is numeric (integer or double), or a character (among
other types).

2.3.2 Importing an excel (.xls, .xlsx) data file

• Function read_excel() from the readxl package allows us to import a .xls or .xlsx data files and
create a dataframe in one single command. Example: open a file .csv and create dataframe labeled as
Wage_data,

library(readxl)
Wage_data2<-read_excel("Example.xlsx")

20

2.3.3 Alternative 2: Creating dataframes from a file included in our working directory

• We can import a data file that is in the working directory. In this case we need to go to the File tab
(bottom-right window), click on the file name and select ‘Import Dataset’ option. The commands to
import the file and name the dataframe are already written for you. You can always edit the name of
the dataframe given by default.

2.3.4 Alternative 3: Creating dataframes from local files using Import Dataset icon

• We can import any data file into RStudio using the Import Dataset icon from the Environment tab
(top-right window) and browsing to locate the file.

• In this case, you need to use the dialog window that opens to choose the name for the dataframe.

2.3.5 Information about the dataframe created from imported file

• To get the names of all the variables included in the dataframe created from imported file use function
names(), as explained above. Example:

Wage_data<-read_csv(file="Example.csv")
names(Wage_data)

[1] "wage" "educ" "exper"

• To get information about the number of variables included in the dataframe created from imported file
use function length(), as explained above. Example:

Wage_data<-read_csv(file="Example.csv")
length(Wage_data)

[1] 3

• To get information about the number of observations included in the dataframe created from imported
file use function nrow(), as explained above. Example:

Wage_data<-read_csv(file="Example.csv")
nrow(Wage_data)

[1] 1472

• To get information about the dimension the dataframe created from imported file use function dim(),
as explained above. Example:

21

Wage_data<-read_csv(file="Example.csv")
dim(Wage_data)

[1] 1472 3

2.3.6 Using variables belonging to a dataframe: Variable accessor

• Variables to be used in our analysis during a session need to be available in our Environment (top-right
window) tab. Variables can be part of a dataframe, or we might have generated them during the session.

• If variables are part of a dataframe created from an imported datafile, using them requires to identify
both, the dataframe they belong to and the name of the variable. It is important to know the exact
spelling of the variables, and also, to remember that R is case-sensitive.

• To work with variables belonging to a dataframe we need to use the accessor operator $. Example, if
we want to display the first 6 observations of variable wage included in dataframe Wage_data:

Wage_data<-read_csv(file="Example.csv")
Wage_data$wage[1:6]

[1] 7.780208 4.818505 10.563644 7.042430 7.887521 8.200057

• If a variable needs to be used repeatedly, then we can define it for the session. Example:

W<-Wage_data$wage
head(W)

[1] 7.780208 4.818505 10.563644 7.042430 7.887521 8.200057

2.3.7 Using variables from a dataframe without using operator $: attach() function

• An alternative to use the accessor operator ($) is to use function attach() after creating the dataframe.
This function attaches the data set included in a dataframe to the R search path. This basically means
that variables in a given dataframe can be used simply by typing their names. Example:

Wage_data<-read_csv(file="Example.csv")
names(Wage_data)

[1] "wage" "educ" "exper"

attach(Wage_data)
head(wage)

[1] 7.780208 4.818505 10.563644 7.042430 7.887521 8.200057

• Important: Before closing the session we need to detach the dataframe using the detach() function, to
avoid using the wrong object in future sessions.

detach(Wage_data)

22

• Important: Always include the name of the dataframe inside the detach function. I.e., do not run it
empty!

2.3.8 Selecting a subset of observations from dataframe

• We can define a dataframe with a subset of observations.

• Here we consider how to select observations under a given criterion using brackets [].

• Example 1: Creating a new dataframe by selecting observations from dataframe Wage_data where
variable edu = 1. Notice we need to use double equal sign (==).

n<-nrow(Wage_data)
n

[1] 1472

Subset1<-Wage_data[Wage_data$educ==1,]
n1<-nrow(Subset1)
n1

[1] 99

• Example 2: Creating a new dataframe by selecting observations from dataframe Wage_data where
variable educ 6= 1. Notice we need to use != to indicate 6=.

n<-nrow(Wage_data)
n

[1] 1472

Subset2<-Wage_data[Wage_data$educ!=1,]
nn1<-nrow(Subset2)
nn1

[1] 1373

• Example 3: Creating a new dataframe by selecting observations from dataframe Wage_data where
variable educ > 1. Notice we need to use >= to indicate greater or equal.

n<-nrow(Wage_data)
n

[1] 1472

Subset3<-Wage_data[Wage_data$educ>=3,]
nn1<-nrow(Subset3)
nn1

[1] 1108

23

• Example 4: Creating a new dataframe by selecting observations from dataframe Wage_data where
variable educ == 1 and variable exper 6= 10. Notice we need to use & to indicate that both conditions
need to hold.

n<-nrow(Wage_data)
n

[1] 1472

Subset3<-Wage_data[Wage_data$educ==1 & Wage_data$exper>=10,]
nn1<-nrow(Subset3)
nn1

[1] 95

• Example 5: Creating a new dataframe by selecting observations from dataframe Wage_data where
variable educ == 1 or educ == 10. Notice we need to use | to indicate that either condition need to
hold.

n<-nrow(Wage_data)
n

[1] 1472

Subset4<-Wage_data[Wage_data$educ==1 | Wage_data$exper>=10,]
nn1<-nrow(Subset4)
nn1

[1] 1084

2.3.9 Missing observations

• To get information of whether the data file imported includes missing observations for any of the
variables use function sum(is.na()). This function will count the number of missing observations.
Example:

Wage_data2<-read_csv(file="Example2.csv")
sum(is.na(Wage_data2))

[1] 2

• To get information, variable by variable, of whether the data file imported includes missing observations
use function colSums(is.na()). This function will count the number of missing observations. Example:

Wage_data2<-read_csv(file="Example2.csv")
colSums(is.na(Wage_data2))

wage educ exper
0 1 1

24

• To get information whether a given variable from the data file imported includes missing observations
use function colSums(is.na()). This function will count the number of missing observations. Example:

Wage_data2<-read_csv(file="Example2.csv")
names(Wage_data2)

[1] "wage" "educ" "exper"

sum(is.na(Wage_data2$wage))

[1] 0

sum(is.na(Wage_data2$educ))

[1] 1

sum(is.na(Wage_data2$exper))

[1] 1

• To create a new dataframe that includes only complete observations, use function na.omit(). Example:

Wage_data2<-read_csv(file="Example2.csv")
Wage_data2c<-na.omit(Wage_data2)

2.4 Saving objects in the workspace as R data objects
We can save selected R objects in our workspace, to use them in another session. Objects in the workspace
are saved with extension Rda (or, equivalently, RData).

2.4.1 Saving a single object from the workspace

• To save a single object from the workspace we use the save() function. Example: saving dataframe
Wage_data as R data file MyData1.Rda

save(Wage_data, file="MyData1.Rda")

• File MyData1.Rda will be added to our working directory. To see it listed in the Files tab (bottom-right
window), use the corresponding refresh icon (grey circle arrow on the right).

• The R data file can be loaded in another session using function load().

load("MyData1.Rda")

25

2.4.2 Saving several objects from the workspace

• Several objects from the workspace can be saved using also the save() function. Example: saving
dataframe Wage_data and also variable Z created during the session:

save(Wage_data, Z, file="MyData2.Rda")

2.4.3 Saving all objects from the workspace

• To save all objects from the workspace we use the save.image() function. Example:

save.image(file="AllMyData.Rda")

2.5 Basic data manipulation
2.5.1 Variable to variable functions

• New variables can be created by transforming existing ones. If variables we wish to transform belong to
a given dataframe, the dataframe needs to be properly identified, unless function attach() has been
used. If the variable has already been identified in the session, then, no need.

• Natural log transformation. Example:

Wage_data<-read_csv(file="Example.csv")
names(Wage_data)

[1] "wage" "educ" "exper"

Define natural log of variable wage
lnwage<-log(Wage_data$wage)

• Polynomial transformations. Example:

Wage_data<-read_csv(file="Example.csv")
names(Wage_data)

[1] "wage" "educ" "exper"

Define square of variable exper
exper2<-Wage_data$exper^2

2.5.2 Variable to scalar functions

• Scalars can be created from existing variables.

• Adding all the observations of a given variable. Example:

Wage_data<-read_csv(file="Example.csv")
names(Wage_data)

[1] "wage" "educ" "exper"

26

Sum all the values of variable wage
sum(Wage_data$wage)

[1] 16266.51

Sum of the square of each of the values of variable wage
sum(Wage_data$wage^2)

[1] 208891.1

2.5.3 Sorting data

• Function sort() allows us to sort data in a dataframe. Example, if we want to create a new dataframe
that includes observations of dataframe Wage_data, sorted from smallest to largest (default) w.r.t. educ

Wage_data1<-sort(Wage_data$educ)

• Sorting Wage_data from largest to smallest w.r.t. educ

Wage_data1<-sort(Wage_data$educ, decreasing = TRUE)

27

3 Simulating random variables
In this section we will consider generating (pseudo) observations for a variable with known statistical
distribution.

In simulating the behavior of random variables we will always select the seed for replicability, using set.seed()
function. That means that for a given seed, the set of observations generated from a given distribution will
always be the same.

Please find below some examples. In class we will simulate a lot, as it is a fantastic learning tool. We will see
many examples!

3.1 Simulating a discrete random variable

3.1.1 Example 1: Bernoulli distribution (E.g: Flipping a coin)

• Flipping a fair coin 5 times

set.seed(1234)
n<-5
Z<-rbinom(n,1,0.5)
Z

[1] 0 1 1 1 1

• Notice that if we do not set the seed, then, everytime you run the command, we would get a different
realization of the random sample.

3.1.2 Example 2: Discrete uniform distribution (E.g.:rolling a die)

• Rolling a die 10 times

#
Z<-sample(1:6,10, rep=TRUE)
Z

[1] 4 1 5 6 4 2 6 2 6 6

• Notice that function sample() is used. This function includes 2 arguments: discrete values to choose
from (1,2,3,4,5,6 in our die) and the number of observations needed (1 in this example).

3.2 Simulating a continuos random variable
3.2.1 Example 1: W ∼ N(10, 4) (Normal distribution: E(W) = 10, var(W) = 4)

Generating 5 observations
set.seed(101)
n<-5
W<-rnorm(n,0,2)
W

[1] -0.6520730 1.1049237 -1.3498877 0.4287189 0.6215384

28

• Notice that function rnorm() is used. This function includes 3 arguments: number of observations
needed (5 in this example), expected value (10 in this case) and standard deviation (2).

3.2.2 Example 2: Y ∼ N(0, 1) (Standard Normal)

Generating 5 observations
set.seed(101)
n<-5
Y<-rnorm(n,0,1)
Y

[1] -0.3260365 0.5524619 -0.6749438 0.2143595 0.3107692

• Notice that function rnorm() is used. This function includes 3 arguments: number of observations
needed (5 in this example), expected value (0 for the standard normal) and standard deviation (1 for
the standard normal).

3.2.3 Example 3: U ∼ U(0, 10) (Continuous Uniform between 0 and 10)

Generating 5 observations
set.seed(101)
n<-5
U<-runif(n,0,10)
U

[1] 3.7219838 0.4382482 7.0968402 6.5769040 2.4985572

• Remember that a U(0, 10) can take any value in the interval from 0 to 10.

29

4 Statistical tables
4.1 Statistical tables: t-distribution
4.1.1 t-distribution : Finding a value associated with a given probability

• Example 1: Given t ∼ t(10), find the value ‘c’ such that Prob(t < c) = 0.05:

c<-qt(0.05,10)
c

[1] -1.812461

• Example 2: Given t ∼ t(10), find the value ‘c’ such that Prob(t > c) = 0.05:

#Option 1:
c<-qt(0.95,10)
c

[1] 1.812461

#Option 2:using symmetry of t distribution
c<- 1-qt(0.05,10)
c

[1] 2.812461

4.1.2 t-distribution : Finding a probability associated with a given value (p-value)

• Example 1: Given t ∼ t(10), find the value ‘p’ such that Prob(t < −2.5) = p :

p<-pt(-2.5,10)
p

[1] 0.01572342

• Example 2: Given t ∼ t(10), find the value ‘p’ such that Prob(t > 2.5) = p :

#Option 1:
p<-1-pt(2.5,10)
p

[1] 0.01572342

#Option 2: using symmetry of t distribution
p<- pt(-2.5,10)
p

[1] 0.01572342

30

4.2 Statistical tables: F -distribution
4.2.1 F-distribution: Finding a value associated with a given probability

• Example 1: Given F ∼ F (2, 50), find the value ‘c’ such that

Prob(F < c) = 0.8

c<-qf(0.8,2,50)
c

[1] 1.662374

• Example 2: Given F ∼ F (2, 50), find the value ‘c’ such that

Prob(F > c) = 0.05

#Option 1:
c<-qf(0.95,2,50)
c

[1] 3.18261

#Option 2:
c<-qf(1-0.05,2,50)
c

[1] 3.18261

4.2.2 F-distribution: Finding a probability associated with a given value

• Example 1: Given F ∼ F (2, 50), find the value ‘p’ such that

Prob(F < 4.2) = p

p<-pf(4.2,2,50)
p

[1] 0.9793971

• Example 2: Given F ∼ F (2, 50), find the value ‘p’ such that

Prob(F > 4.2) = p

p<-1-pf(4.2,2,50)
p

[1] 0.02060293

31

5 Basic descriptive statistics
In this section we review some basic descriptive statistics for variables in data set Example.csv. First we will
import the data file into RStudio using function read_csv() from readr package:

library(readr)
Wage_data<-read_csv(file="Example.csv")

Variables included in this dataframe are:

names(Wage_data)

[1] "wage" "educ" "exper"

5.1 Measures of location
• Mean

#Sample mean
mean(Wage_data$wage)

[1] 11.05062

• Conditional mean: If we want to calculate the sample mean for people with educ = 1

mean(Wage_data$wage[Wage_data$educ==1])

[1] 8.429049

• Median

#Sample median
median(Wage_data$wage)

[1] 10.12665

• Set of measures (mean, median and quartiles)

summary(Wage_data)

wage educ exper
Min. : 2.191 Min. :1.000 Min. : 0.00
1st Qu.: 8.113 1st Qu.:3.000 1st Qu.: 9.00
Median :10.127 Median :3.000 Median :16.50
Mean :11.051 Mean :3.378 Mean :17.22
3rd Qu.:12.755 3rd Qu.:4.000 3rd Qu.:24.00
Max. :47.576 Max. :5.000 Max. :47.00

32

5.2 Measures of dispersion
• Smallest and largest values

max(Wage_data$wage)

[1] 47.57552

min(Wage_data$wage)

[1] 2.190978

• Variance

#Sample variance
var(Wage_data$wage)

[1] 19.80707

• Standard deviation

#Sample standard deviation
sd(Wage_data$wage)

[1] 4.450513

5.3 Measures of shape
• Coefficient of skewness

library(moments)
skewness(Wage_data$wage)

[1] 1.953399

• Coefficient of kurtosis

library(moments)
kurtosis(Wage_data$wage)

[1] 10.31803

33

5.4 Measures of linear association
• Covariance

#Sample covariance
cov(Wage_data$wage,Wage_data$educ)

[1] 2.089511

• (Pearson) correlation coefficient

cor(Wage_data$wage,Wage_data$educ)

[1] 0.3897805

34

6 Graphs using ggplot2 package
This section includes plotting data using ggplot() function from ggplot2 package. We will only consider 2D
graphs.

All plots generated, regardless of whether they have been given a name or not, are going to be displayed in
the Plots tab (bottom-right window). If we have generated more than one plot, we can navigate from one to
the other using the corresponding arrows available in the Plots tab menu.

A given plot can be saved, or copied into the clipboard, using the Export option available in the Plots tab
menu. The saved files will be placed in your working directory.

To use package ggplot2 we need to have the package already installed and then load it either using library()
command (or clicking on the box next to the package name in the packages tab).

6.1 Basic structure
After loading the package, to first step in creating a ggplot is to define a ggplot object. This is done using
the ggplot() function that initializes the plot. This creates a blank slate.

The first argument inside the ggplot() function is information about the dataframe where the variables to
be included in the plot belong to. This is done by using ggplot(data=) and writing inside name of the
dataframe. Example, to use variable(s) from dataframe Wage_data, we use ggplot(data=Wage_data,).

If we wish to generate a plot using variables generated during the session we can use ggplot(data=NULL,)
or just leave the first argument blank ggplot(,).

The second argument inside the ggplot() function it to identify the which variable(s) we wish to include in
the plot. As we shall see, this will be done by adding argument aes() inside the ggplot() function.

A ggplot2 plot is created by adding layers to the basic ggplot() function, using the + sign. That is:

ggplot() + LAY ER1 + LAY ER2 + LAY ER3 +

• LAYER 1: The first layer usually defines the geometry (type of graph) we want to create. Examples:

– ggplot() + geom_histogram() (to generate a histogram)
– ggplot() + geom_point() (to generate a scatter)
– ggplot() + geom_line() (to generate a line plot)

• LAYER 2,3,4. . . : Choice to editing axis labels, axis scale, adding lines, . . . Order does not matter.

As example we will use variables in data set Example.csv. First we will import the data file into RStudio
using function read_csv() from readr package:

library(readr)
Wage_data<-read_csv(file="Example.csv")

names(Wage_data)

[1] "wage" "educ" "exper"

35

6.2 One variable plots: Histograms

6.2.1 Absolute frequency histogram (discrete variable)

• Example: Absolute frequency histogram for a discrete variable Z, we have generated.

n<-100
set.seed(1234)
Z<-sample(1:6,n, rep=TRUE)
ggplot(data=NULL , aes(x=Z))+

geom_histogram(aes(y=..count..))

0

5

10

15

20

25

2 4 6
Z

co
un

t

Or, for short:

n<-100
set.seed(1234)
Z<-sample(1:6,n, rep=TRUE)
ggplot(, aes(x=Z))+

geom_histogram(aes(y=..count..))

0

5

10

15

20

25

2 4 6
Z

co
un

t

• Notice the variable to be placed in the vertical axis (absolute frequencies in this case) are directly
calculated by ggplot.

6.2.2 Relative frequency histogram (discrete variable)

• Example: Relative frequency histogram for a discrete variable Z, we have generated.

n<-100
set.seed(1234)

36

Z<-sample(1:6,n, rep=TRUE)
ggplot(data=NULL, aes(x=Z))+

geom_histogram(aes(y=..count../n))

0.00

0.05

0.10

0.15

0.20

0.25

2 4 6
Z

co
un

t/n

• Notice the variable to be placed in the vertical axis (relative frequencies in this case) are directly
calculated by ggplot .

6.2.3 Density histogram (continuous variable)

• Example: Density histogram for a discrete variable Z, we have generated.

n<-10000
set.seed(1234)
W<-rnorm(n,0,1)
ggplot(data=NULL , aes(x=W))+

geom_histogram(aes(y=..density..))

0.0

0.1

0.2

0.3

0.4

−2 0 2 4
W

de
ns

ity

• Notice the variable to be placed in the vertical axis (densities in this case) are directly calculated by
ggplot.

6.2.4 Editing

• We can edit the color of the histogram (filling and lines). Example:

#
n<-10000
set.seed(1234)
W<-rnorm(n,0,1)
ggplot(data=NULL , aes(x=W))+

37

geom_histogram(aes(y=..density..), fill="lightblue", color="darkblue")

0.0

0.1

0.2

0.3

0.4

−2 0 2 4
W

de
ns

ity

• To see color palette you can check (e.g.): http://sape.inf.usi.ch/quick-reference/ggplot2/colour

6.2.5 Additional layers: editing axes labels, range, plot title,

• Editing axis labels

n<-10000
W<-rnorm(n,0,1)
ggplot(data=NULL , aes(x=W))+

geom_histogram(aes(y=..density..),fill="lightblue", color="darkblue") +
xlab("variable W ") + ylab("Estimated Density")

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
variable W

E
st

im
at

ed
 D

en
si

ty

• Notice layers can be added at the same time of generating the plot, or, they can be added, from an
already defined and labels plot. Example:

n<-10000
W<-rnorm(n,0,1)
p<- ggplot(data=NULL , aes(x=W))+

geom_histogram(aes(y=..density..),fill="lightblue", color="darkblue")
p+xlab("variable W ") + ylab("Estimated Density")

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
variable W

E
st

im
at

ed
 D

en
si

ty

38

http://sape.inf.usi.ch/quick-reference/ggplot2/colour

• Editing axes range

n<-10000
W<-rnorm(n,0,1)
p<- ggplot(data=NULL , aes(x=W))+

geom_histogram(aes(y=..density..),fill="lightblue", color="darkblue")

p+ xlim(-5,5) + ylim(0,0.5)

0.0

0.1

0.2

0.3

0.4

0.5

−5.0 −2.5 0.0 2.5 5.0
W

de
ns

ity

• Adding plot title

n<-10000
W<-rnorm(n,0,1)
p<- ggplot(data=NULL , aes(x=W))+

geom_histogram(aes(y=..density..),fill="lightblue", color="darkblue")

p+ ggtitle("Figure 1: Density histogram of W")

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
W

de
ns

ity

Figure 1: Density histogram of W

6.3 2 variable plots: Scatters
• To select a histogram we will use geom_point() geometry.
• First we will generate observations of two variables, Z1 and Z2, create a dataframe including these two

variables and then, indicate we want a scatter plot. To create a 2d-scatter plot, we need to identify the
two variables in the ggplot() function, indicating which variable acts as x (horizontal axis) and which
one acts as y (vertical axis)

39

Example 1: Z, W unrelated
n<-30
Z<-runif(n,0,10)
W<-runif(n,0,5)
ggplot(data=NULL , aes(x=Z, y=W)) +

geom_point()

0

1

2

3

4

0.0 2.5 5.0 7.5 10.0
Z

W

Example 2: Z, W linearly related
n<-30
Z<-runif(n,0,10)
W<-2*Z+rnorm(n,0,3)
ggplot(data=NULL , aes(x=Z, y=W)) +

geom_point()

0

5

10

15

20

0.0 2.5 5.0 7.5 10.0
Z

W

Example 3: Z, W perfectly correlated
n<-60
Z<-runif(n,0,10)
W<-2*Z
ggplot(data=NULL, aes(x=Z, y=W)) +

geom_point()

0

5

10

15

20

0.0 2.5 5.0 7.5 10.0
Z

W

40

6.3.1 Editing shape, color and size of markers
ggplot(data = NULL, aes(x=Z, y=W)) +

geom_point(shape=20, color="darkblue", size=3)

0

5

10

15

20

0.0 2.5 5.0 7.5 10.0
Z

W
• To see options for marker shape: http://sape.inf.usi.ch/quick-reference/ggplot2/shape

6.3.2 Additional layers: editing axes labels, scale, range,

• Editing axes labels

n<-30
Z<-runif(n,0,10)
W<-2*Z+rnorm(n,0,3)
p<-ggplot(data=NULL , aes(x=Z, y=W)) + geom_point()
p+ xlab("variable Z") + ylab("variable W")

0

5

10

15

20

0.0 2.5 5.0 7.5 10.0
variable Z

va
ria

bl
e

W

• Editing axes range

n<-30
Z<-runif(n,0,10)
W<-2*Z+rnorm(n,0,3)

p<- ggplot(data=NULL , aes(x=Z, y=W)) + geom_point()
p+ xlim(0,12) + ylim(-2,22)

0

5

10

15

20

0.0 2.5 5.0 7.5 10.0 12.5
Z

W

41

http://sape.inf.usi.ch/quick-reference/ggplot2/shape

• Editing axes range and brakes

n<-30
Z<-runif(n,0,10)
W<-2*Z+rnorm(n,0,3)

p<-ggplot(data=NULL , aes(x=Z, y=W)) + geom_point()
p+ scale_x_discrete(limits=seq(0,10,by=2)) +

scale_y_discrete(limits=seq(0,20,by=5))

 0

 5

10

15

20

 0 2 4 6 8 10
Z

W

• Editing: removing plot background

n<-30
Z<-runif(n,0,10)
W<-2*Z+rnorm(n,0,3)

p<-ggplot(data=NULL , aes(x=Z, y=W)) + geom_point()
p+theme_bw()

0

5

10

15

20

0.0 2.5 5.0 7.5 10.0
Z

W

• Editing: removing plot grid lines

n<-30
Z<-runif(n,0,10)
W<-2*Z+rnorm(n,0,3)

p<-ggplot(data=NULL , aes(x=Z, y=W)) + geom_point()
p+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())

0

10

20

0.0 2.5 5.0 7.5 10.0
Z

W

42

6.3.3 Scatter plots without using package ggplot2()

Scatter plots can be also easily produced without using ggplot2 package if you wish. In this case, you can
use function plot(). Example:

n<-30
Z<-runif(n,0,10)
W<-2*Z+rnorm(n,0,3)
plot(Z,W, xlab="variable Z", ylab="variable W", pch=19)

0 2 4 6 8 10

0
5

10
15

20

variable Z

va
ria

bl
e

W

43

7 Vectors and matrices in R
In this section we will learn to create vectors and matrices by entering its elements one-by-one, by using
variables created in a session, or variables that belong to a dataframe listed in our environment window.

7.1 Creating vectors and matrices using function matrix()
• We will learn to create vectors or matrices using function matrix(). Function matrix() creates a

matrix object from the given set of values (only numbers!) inside the argument, according to the
specified number of columns (or rows).

7.1.1 Creating a vector or matrix by entering its elements

• Creating row vector. Example a creating row vector v:

v =
[
1 2 3

]

v<-matrix(c(1,2,3),ncol=3)
v

[,1] [,2] [,3]
[1,] 1 2 3

• Creating a column vector. Example a creating column vector w:

w =

1
2
3



w<-matrix(c(1,2,3),ncol=1)
w

[,1]
[1,] 1
[2,] 2
[3,] 3

• Creating a matrix. Example of creating matrix A:

A =

1 4
2 5
3 6



A1<-c(1,2,3)
A2<-c(4,5,6)

44

A<-matrix(c(A1,A2), ncol=2)
A

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

7.1.2 Creating a vector or a matrix: shortcuts

• Creating a constant vector: Examples

#Row vector of 1s
u <-matrix(rep(1,4),ncol=4)
u

[,1] [,2] [,3] [,4]
[1,] 1 1 1 1

#Column vector of 1s
u <-matrix(rep(1,4),ncol=1)
u

[,1]
[1,] 1
[2,] 1
[3,] 1
[4,] 1

• Creating a diagonal matrix. Examples:

d<-c(1,2,3)
A <-diag(d)
A

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3

Or, in the case we want to create an identity matrix 4x4:

d<-rep(1,4)
I <-diag(d)
I

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1

45

7.1.3 Creating a matrix using variables from a data set

• We can create a vector, or a matrix, from variables included in a given dataframe.

• Example:

library(readr)
Wage_data<-read_csv(file="Example.csv")
A<-matrix(c(Wage_data$educ, Wage_data$exper), ncol=2)

In this example, a matrix A including all observations of variables educ and exper from dataframe Wage_data
will be created.

7.1.4 Information about a matrix

• Number of rows of a matrix. Example:

A1<-c(1,2,3)
A2<-c(4,5,6)
A<-matrix(c(A1,A2), ncol=2)
nrow(A)

[1] 3

• Number of columns of a matrix. Example:

A1<-c(1,2,3)
A2<-c(4,5,6)
A<-matrix(c(A1,A2), ncol=2)
ncol(A)

[1] 2

• Dimension of a matrix. Example:

A1<-c(1,2,3)
A2<-c(4,5,6)
A<-matrix(c(A1,A2), ncol=2)
dim(A)

[1] 3 2

\medskip

46

7.2 Matrix Operations
7.2.1 Operations involving one matrix

• Operation involving a matrix, A or B. Example:

A =

1 4
2 5
3 6

 B =
[
1 4
2 6

]

A1<-c(1,2,3)
A2<-c(4,5,6)
A<-matrix(c(A1,A2), ncol=2)
A

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

B1<-c(1,2)
B2<-c(4,6)
B<-matrix(c(B1,B2), ncol=2)
B

[,1] [,2]
[1,] 1 4
[2,] 2 6

• Multiplying matrix A by a scalar:

C<-2*A
C

[,1] [,2]
[1,] 2 8
[2,] 4 10
[3,] 6 12

• Transposing matrix A

tA<-t(A)
tA

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

47

• Rank of matrix A:

rankA<-qr(A)$rank
rankA

[1] 2

• Inverse of matrix B

iB<-solve(B)
iB

[,1] [,2]
[1,] -3 2.0
[2,] 1 -0.5

• Selecting elements of a matrix

Select second row
A[2,]

[1] 2 5

Select first column
c1<-A[,1]
c1

[1] 1 2 3

Select element (3,2) (position: third row, second column)
p23<-A[3,2]
p23

[1] 6

7.2.2 Operations involving two matrices

• Operation involving matrices. Example using matrix A, B, C:

A =

1 4
2 5
3 6

 B =

1 −1
1 −1
1 −1

 C =
[
1 1 2
1 −1 0

]

First let us define these matrices:

A1<-c(1,2,3)
A2<-c(4,5,6)
A<-matrix(c(A1,A2), ncol=2)

48

A

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

B1<-c(1,1,1)
B2<- c(-1,-1,-1)
B<-matrix(c(B1,B2), ncol=2)
B

[,1] [,2]
[1,] 1 -1
[2,] 1 -1
[3,] 1 -1

C1<-c(1,1)
C2<- c(-1,-1)
C3<-c(2,0)
C<-matrix(c(C1,C2,C3), ncol=3)
C

[,1] [,2] [,3]
[1,] 1 -1 2
[2,] 1 -1 0

• Matrix addition or subtraction

Matrices are add/subtract by adding/subtracting element by element. To add (or subtract) two matrices,
they have to be conformable. What does conformable imply here? they need to have the same dimension.
Hence to calculate A+B or A−B, we require dim(A) = dim(B).

• Matrix multiplication (only type of matrix multiplication we are going to need!)

To multiply two matrices A and B, as seen in your matrix algebra math course in your first year, they
have to be conformable. What does conformable imply here? Number of columns first matrix=number
of rows second matrix. That is, to multiply A ·B we require: ncol(A) = nrow(B).

To multiply two matrices we need to use operator % ∗ % Please be careful and do not use ∗ by itself!

E<-A%*%C
E

[,1] [,2] [,3]
[1,] 5 -5 2
[2,] 7 -7 4
[3,] 9 -9 6

49

Summary of matrix operations:

Operation Description Condition for operation

ncol(A) number of columns -

nrow(A) number of rows -

dim(A) Matrix dimension -

diag(A) Selecting elements of diagonal A square

A[i,j] Select matrix element (i, j) -

t(A) Matrix transpose -

det(A) Matrix determinant A square

qr(A)$rank Matrix rank -

solve(A) Matrix inverse A square and non singular

A+B Element-wise summation dim(A)= dimB

A-B Element-wise subtraction dim(A)= dimen(B)

A*B Element-wise multiplication dim(A)= dim(B)

A%*% Matrix multiplication ncol(A)=nrow(B)

50

8 Simple regression model: OLS estimation
This section includes some basic commands for OLS estimation of a simple regression model, using as example
data file Example.csv and regression model:

wage = β0 + β1educ+ u

To begin with we need to read the data file, located in the working directory, and create dataframe named
Wage_data with it. We use function readr_csv() from package readr.

library(readr)
Wage_data<-read_csv(file="Example.csv")

Parsed with column specification:
cols(

wage = col_double(),
educ = col_double(),
exper = col_double()

)

names(Wage_data)

[1] "wage" "educ" "exper"

As explained, to use the variables in this dataframe without having to identify the name of the dataframe, we
will use accessor operator $ (unless we have used the attach() function, as explained in section 2.3.7.). In
this case we will use the accessor operator to rename the variables.

W<-Wage_data$wage
ED<-Wage_data$educ
EX<-Wage_data$exper

8.1 OLS estimation
8.1.1 Parameter estimates

OLS estimator in summation form for this example is given by:

β̂1 =
∑n

i=1 (Wi −W)(EDi − ED)∑n
i=1 (EDi − ED)2

β̂0 = W − β̂1ED

Then, OLS estimates in summation form:

dED<-ED-mean(ED)
dW<-W-mean(W)
b1hat<-sum(dED*dW)/sum(dED^2)
b0hat<-mean(W)-b1hat*mean(ED)
b0hat

[1] 6.18513

51

b1hat

[1] 1.440176

8.1.2 Fitted values and residuals

Ŵi ≡ β̂0 + β̂1EDi ûi ≡Wi − Ŵi

What<-b0hat+b1hat*ED
uhat<-W-What

We can create a dataframe with original variables, fitted values and residuals:

W<-Wage_data$wage
ED<-Wage_data$educ
Wage_dataB<-data.frame(ED,W,What, uhat)

To view these values you can use the View(Wage_dataB) command seen before, that will open this
dataframe as a spreadsheet in a new tab in the top left window.

8.2 OLS estimation using matrix algebra
8.2.1 Parameter estimates using matrix algebra

OLS estimator in matrix algebra:

β̂ = (X ′X)−1X ′y

Matrix X: First column will include the constant regressor, second column will include the 13 observations of
variable ED in dataframe Wage_data. Vector y will be a column vector including the 13 observations of
variable W , belonging to the same dataframe. Given that variables ED and W have already been defined
using the accessor operator $, we can use them directly to construct X and y.

n<-nrow(Wage_data)
C<-rep(1,n)
ED<-Wage_data$educ
X<-matrix(c(C, ED),ncol=2)
W<-Wage_data$wage
y<-matrix(W,ncol=1)

bhat<-solve(t(X)%*%X)%*%t(X)%*%y
bhat

[,1]
[1,] 6.185130
[2,] 1.440176

52

8.2.2 Vector of fitted values and residuals using matrix algebra

ŷ = Xβ̂ û = y − ŷ

What<- X %*% bhat
uhat<- W-What

8.3 Coefficient of determination

R2 = SSE

SST
or R2 = 1− SSR

SST

where:

SST =
∑

i

Wi −W
2

SSE =
∑

i

Wi − Ŵ
2

SSR =
∑

i

û2
i

Using fitted values (What) and residuals (uhat) are already defined above:

SST<-sum((W-mean(W))^2)
SSE<-sum((What-mean(What))^2)
SSR<-sum(uhat^2)
R2<-SSE/SST
R2

[1] 0.1519288

R2<-1-SSR/SST
R2

[1] 0.1519288

8.4 OLS estimation: standard errors
Recall:

se(β̂0) =
√
σ̂2(X ′X)−1

1,1 se(β̂1) =
√
σ̂2(X ′X)−1

2,2

where:

σ̂2 = SSR

n− 2

Then:

#Estimate sigma2
n<-13
s2hat<-SSR/(n-2)
s2hat

[1] 2246.324

53

#
#Estimate variance of OLS estimator
#
vbhat<-s2hat*solve(t(X)%*%X)
vbhat

[,1] [,2]
[1,] 13.539046 -3.555832
[2,] -3.555832 1.052521

#
Verify standard errors
#
seb0hat<-sqrt(vbhat[1,1])
seb1hat<-sqrt(vbhat[2,2])
seb0hat

[1] 3.679544

seb1hat

[1] 1.025924

8.5 OLS estimation using function lm()
R provides function lm() to directly calculate OLS estimates plus some additional statistics associated with
the OLS estimation. Example:

lm(wage~educ, data=Wage_data)

Call:
lm(formula = wage ~ educ, data = Wage_data)

Coefficients:
(Intercept) educ

6.185 1.440

If variables to be used in the regression have already been defined in the session, or, if we have used the
attach() function, then no need to identify the name of the dataframe where the variables belong to. That
is:

attach(Wage_data)
lm(wage~educ)

Call:
lm(formula = wage ~ educ)

Coefficients:
(Intercept) educ

6.185 1.440

54

8.5.1 Options after using function lm()

• Getting parameter estimates: Option 1

Model1<-lm(wage~educ, data=Wage_data)
Model1

Call:
lm(formula = wage ~ educ, data = Wage_data)

Coefficients:
(Intercept) educ

6.185 1.440

• Getting parameter estimates: Option 2

Model1<-lm(wage~educ, data=Wage_data)

bhat <- Model1$coefficients
b0hat<-bhat[1]
b0hat

(Intercept)
6.18513

b1hat <- bhat[2]
b1hat

educ
1.440176

Vector of OLS estimates and also individual coefficient estimates will be added to the workspace.

• Getting fitted values and residuals:

Model1<-lm(wage~educ, data=Wage_data)

What<-Model1$fitted
uhat<-Model1$residuals

Fitted values What and residuals uhat will be added to the workspace (Environment tab in top-right
window).

• Getting coefficient of determination

Model1<-lm(wage~educ, data=Wage_data)
R2<-summary(Model1)$r.squared
R2

[1] 0.1519288

55

• Getting overall summary statistics from the estimation

Model1<-lm(wage~educ, data=Wage_data)
summary(Model1)

Call:
lm(formula = wage ~ educ, data = Wage_data)

Residuals:
Min 1Q Median 3Q Max

-10.569 -2.731 -0.615 1.907 34.190

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.18513 0.31830 19.43 <2e-16 ***
educ 1.44018 0.08875 16.23 <2e-16 ***

Residual standard error: 4.1 on 1470 degrees of freedom
Multiple R-squared: 0.1519, Adjusted R-squared: 0.1514
F-statistic: 263.3 on 1 and 1470 DF, p-value: < 2.2e-16

• Getting overall summary statistics from the estimation using package stargazer

We can use built-in function lm() for OLS estimation of our model, but then use function stargazer()
from package stargazer to present output in a nicer table. To use function stargazer() we need to
load stargazer package (once per session), using:

library(stargazer)

Model1<-lm(wage~educ, data=Wage_data)
stargazer(Model1, type = "text")

===
Dependent variable:

wage

educ 1.440***

(0.089)

Constant 6.185***
(0.318)

Observations 1,472
R2 0.152
Adjusted R2 0.151
Residual Std. Error 4.100 (df = 1470)
F Statistic 263.345*** (df = 1; 1470)
===
Note: *p<0.1; **p<0.05; ***p<0.01

In this course, we will use the stargazer() function to get the complete output of our OLS estimation.

56

8.6 Plotting observations and fitted line
We can plot observations and fitted line using ggplot2 package. Example

library(ggplot2)
ggplot(data=Wage_data, aes(x=educ, y=wage)) + geom_point(size = 1) +

geom_smooth(method='lm', se = FALSE)

`geom_smooth()` using formula 'y ~ x'

0

10

20

30

40

1 2 3 4 5
educ

w
ag

e

57

9 Simple regression model: inference with t statistic
This section includes basic commands for inference based on OLS estimator using as example data file
Example.csv and regression model:

wage = β0 + β1educ+ u

To begin with we need to read the data file, located in the working directory, and create dataframe named
Wage_data with it.

library(readr)
Wage_data<-read_csv(file="Example.csv")
names(Wage_data)

[1] "wage" "educ" "exper"

For inference we will need the statistical tables. In the case of the simple regression model, the tables of the
t-distribution will be needed. Please see Sub-section 4.1.

9.1 Significance test of each regressor (t-values, p-values, ∗)
9.1.1 Using lm() and stargazer() functions

After running a regression using built-in function lm(), stargazer() function will print, by default, among
others: name of the regressor (v), OLS estimates (c), corresponding stardard error in parentheses (s) below
each estimate, and the astericks notation to indicate at what level (1%,5%, 10%) a regressor is significant (∗).
Example:

Model1<-lm(wage~educ, data=Wage_data)
library(stargazer)
stargazer(Model1 , type = "text")

===
Dependent variable:

wage

educ 1.440***

(0.089)

Constant 6.185***
(0.318)

Observations 1,472
R2 0.152
Adjusted R2 0.151
Residual Std. Error 4.100 (df = 1470)
F Statistic 263.345*** (df = 1; 1470)
===
Note: *p<0.1; **p<0.05; ***p<0.01

Function stargazer() also gives you the option to select which statistics related to the significance test of
each regressor we wish to include in the output, using function report.

58

Options available include: name of the regressor (v), OLS estimates (c), standard errors (s), t-values (t),
p-value (p) and to report or not report the ∗’s. Example:

Model1<-lm(wage~educ, data=Wage_data)
library(stargazer)
stargazer(Model1 , type = "text" , single.row=TRUE, report="vcstp*")

===
Dependent variable:

wage

educ 1.440 (0.089)

t = 16.228
p = 0.000***

Constant 6.185 (0.318)
t = 19.432

p = 0.000***

Observations 1,472
R2 0.152
Adjusted R2 0.151
Residual Std. Error 4.100 (df = 1470)
F Statistic 263.345*** (df = 1; 1470)
===
Note: *p<0.1; **p<0.05; ***p<0.01

Important: You should know how t− values and p− values are calculated without using the report option!

9.2 Confidence intervals
9.2.1 Confidence intervals using function confint

• Calculating the confidence interval (default=95% confidence level) for our regression parameters can be
done using function confint(). This function needs to be used after estimating a model using built-in
function lm(). Example:

Model1<-lm(wage~educ, data=Wage_data)
confint(Model1)

2.5 % 97.5 %
(Intercept) 5.560766 6.809493
educ 1.266092 1.614260

• Calculating the confidence interval changing the default 95% confidence level to, say, 99% confidence
level, can be done using option level. Example:

Model1<-lm(wage~educ, data=Wage_data)
confint(Model1, level=.99)

59

0.5 % 99.5 %
(Intercept) 5.364187 7.006073
educ 1.211282 1.669070

9.2.2 Confidence intervals using function lm() and stargazer() function

Function stargazer() also allows us to calculate confidence intervals by including option ci.custom. Example:

Model1<-lm(wage~educ, data=Wage_data)
stargazer(Model1, ci.custom = list(confint(Model1)), type = "text")

===
Dependent variable:

wage

educ 1.440***

(1.266, 1.614)

Constant 6.185***
(5.561, 6.809)

Observations 1,472
R2 0.152
Adjusted R2 0.151
Residual Std. Error 4.100 (df = 1470)
F Statistic 263.345*** (df = 1; 1470)
===
Note: *p<0.1; **p<0.05; ***p<0.01

60

10 Simple regression model: prediction
10.1 Point prediction

model1 <- lm(wage~educ, data=Wage_data)
predict(model1, newdata=data.frame(educ=c(20)))

1
34.98865

10.2 Interval prediction

model1 <- lm(wage~educ, data=Wage_data)
predict(model1, newdata=data.frame(educ=c(20)), interval="prediction")

fit lwr upr
1 34.98865 26.43909 43.53821

61

11 Multiple regression model: estimation
This section includes some basic commands for inference based on OLS estimator for a multiple regression
model, using as example data file Example.csv and regression model:

wage = β0 + β1educ+ β2exper + u

To begin with we need to read the data file, located in the working directory, and create dataframe named
Wage_data with it.

library(readr)
Wage_data<-read_csv(file="Example.csv")

names(Wage_data)

[1] "wage" "educ" "exper"

11.1 OLS estimation
11.1.1 Parameter estimates using matrix algebra

• OLS estimator in matrix algebra:

β̂ = (X ′X)−1X ′y

Defining necessary matrices:

n<-nrow(Wage_data)
C<-rep(1,n)
ED<-Wage_data$educ
EX<-Wage_data$exper

X<-matrix(c(C,ED,EX),ncol=3)
W<-Wage_data$wage
y<-matrix(c(W),ncol=1)

OLS estimates:

bhat<-solve(t(X)%*%X)%*%t(X)%*%y
bhat

[,1]
[1,] 1.073736
[2,] 1.930375
[3,] 0.200687

62

11.1.2 Fitted values and residuals

Recall:
ŷ = Xβ̂ û = y − ŷ

Vector of OLS Fitted and OLS residuals:

yhat<- X %*% bhat
uhat<- y-yhat

11.2 Googness of fit
Coefficient of determination and adjusted coefficient of determination

R2 = SSE

SST
or R2 = 1− SSR

SST
R

2 = 1− SSR/(n− (K + 1))
SST/(n− 1)

where:

SST =
∑

i

(testscri − testscr)
2

SSE =
∑

i

(̂testscri − testscr)
2

SSR =
∑

i

û2
i

11.2.1 Coefficient of determination:

SST<-sum((W-mean(W))^2)
SSE<-sum((yhat-mean(yhat))^2)
SSR<-sum(uhat^2)
R2<-SSE/SST
R2

[1] 0.3444999

R2<-1-SSR/SST
R2

[1] 0.3444999

11.2.2 Adjusted coefficient of determination:

SST<-sum((W-mean(W))^2)
SSE<-sum((yhat-mean(yhat))^2)
SSR<-sum(uhat^2)
df1<-(n-3)
df2<-n-1
adjR2<- 1 - (SSR/df1)/(SST/df2)
adjR2

[1] 0.3436074

63

11.2.3 OLS estimation: standard errors

Recall:

se(β̂0) =
√
σ̂2(X ′X)−1

1,1 se(β̂1) =
√
σ̂2(X ′X)−1

2,2

where:

σ̂2 = SSR

n− 3

Then, using definitions of matrix of X (including observations of all regressors) and vector y (including all
observations of dependent variable), the step-by-step calculation of the standard errors using matrix algebra:

#Estimate sigma2
n<-13
SSR<-sum(uhat^2)
s2hat<-SSR/(n-3)
s2hat

[1] 1909.878

#
#Estimate variance of OLS estimator
#
vbhat<-s2hat*solve(t(X)%*%X)
vbhat

[,1] [,2] [,3]
[1,] 20.4044666 -3.87614336 -0.34917283
[2,] -3.8761434 0.97667279 0.03348679
[3,] -0.3491728 0.03348679 0.01370946

#
Defining standard errors
#
seb0hat<-sqrt(vbhat[1,1])
seb1hat<-sqrt(vbhat[2,2])
seb2hat<-sqrt(vbhat[3,3])
seb0hat

[1] 4.51713

seb1hat

[1] 0.9882676

seb2hat

[1] 0.1170874

64

11.3 OLS estimation using function lm()
OLS estimation of regression:

Model(2) : wage = β0 + β1educ+ β2exper + u

As seen for the simple regression model, function lm() can be used to directly calculate OLS estimates.
Example:

Model2<-lm(wage~educ+exper, data=Wage_data)
Model2

Call:
lm(formula = wage ~ educ + exper, data = Wage_data)

Coefficients:
(Intercept) educ exper

1.0737 1.9304 0.2007

11.3.1 Estimating model without a constant

Model(3) : wage = β1educ+ β2exper + u

Model3<-lm(wage~educ+exper-1 , data=Wage_data)
Model3

Call:
lm(formula = wage ~ educ + exper - 1, data = Wage_data)

Coefficients:
educ exper

2.1343 0.2191

11.3.2 Estimating model with a subset of observations

• Consider we want to estimate Model(4) using only observations where educ = 1.

Model(4) : W = wage = β0 + β1exper + u

Model4<-lm(wage~exper,data=subset(Wage_data,educ==1))
Model4

Call:
lm(formula = wage ~ exper, data = subset(Wage_data, educ == 1))

Coefficients:
(Intercept) exper

6.86795 0.06035

65

• Consider we want to estimate Model(4) but using observations where educ 6= 1.

Model4<-lm(wage~exper,data=subset(Wage_data,educ!=1))
Model4

Call:
lm(formula = wage ~ exper, data = subset(Wage_data, educ != 1))

Coefficients:
(Intercept) exper

8.5098 0.1645

11.3.3 Options after using function lm()

• Getting parameter estimates: Option 1

Model2<-lm(wage~educ+exper, data=Wage_data)
Model2

Call:
lm(formula = wage ~ educ + exper, data = Wage_data)

Coefficients:
(Intercept) educ exper

1.0737 1.9304 0.2007

• Getting parameter estimates: Option 2

Model2<-lm(wage~educ+exper, data=Wage_data)
bhat<-Model1$coefficients
b0hat<-bhat[1]
b0hat

(Intercept)
6.18513

b1hat<-bhat[2]
b1hat

educ
1.440176

b2hat<-bhat[3]
b2hat

<NA>
NA

66

• Getting fitted values and residuals:

Model2<-lm(wage~educ+exper, data=Wage_data)
#
Associated fitted values and residuals
#
What<-Model2$fitted
uhat<-Model2$residuals

• Getting coefficient of determination

Model2<-lm(wage~educ+exper, data=Wage_data)
R2<-summary(Model2)$r.quared
R2

NULL

• Getting adjusted coefficient of determination

Model2<-lm(wage~educ+exper, data=Wage_data)
adjR2<-summary(Model2)$adj.r.squared
adjR2

[1] 0.3436074

• Getting overall summary statistics from the estimation

Model2<-lm(wage~educ+exper, data=Wage_data)
summary(Model2)

Call:
lm(formula = wage ~ educ + exper, data = Wage_data)

Residuals:
Min 1Q Median 3Q Max

-14.0436 -2.0808 -0.4068 1.5915 31.2307

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.07374 0.37269 2.881 0.00402 **
educ 1.93037 0.08154 23.674 < 2e-16 ***
exper 0.20069 0.00966 20.774 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.606 on 1469 degrees of freedom
Multiple R-squared: 0.3445, Adjusted R-squared: 0.3436
F-statistic: 386 on 2 and 1469 DF, p-value: < 2.2e-16

67

• Getting overall summary statistics from the estimation using package stargazer

Model2<-lm(wage~educ+exper, data=Wage_data)
stargazer(Model2 , type = "text")

===
Dependent variable:

wage

educ 1.930***

(0.082)

exper 0.201***
(0.010)

Constant 1.074***
(0.373)

Observations 1,472
R2 0.344
Adjusted R2 0.344
Residual Std. Error 3.606 (df = 1469)
F Statistic 386.018*** (df = 2; 1469)
===

11.3.4 Reporting estimation of two models in a single table

• Example:

Model1<-lm(wage~educ, data=Wage_data)
Model2<-lm(wage~educ+exper, data=Wage_data)
stargazer(Model1 , Model2 , type = "text")

===
Dependent variable:

wage

(1) (2)

educ 1.440*** 1.930***

(0.089) (0.082)

exper 0.201***
(0.010)

Constant 6.185*** 1.074***
(0.318) (0.373)

Observations 1,472 1,472
R2 0.152 0.344
Adjusted R2 0.151 0.344
Residual Std. Error 4.100 (df = 1470) 3.606 (df = 1469)
F Statistic 263.345*** (df = 1; 1470) 386.018*** (df = 2; 1469)
===

68

11.4 Calculating variance inflating factors
11.4.1 By estimating auxiliary regression

We can calculate the variance inflating factor associated with the estimation of a parameter by running the
appropriate auxiliary regression and its associated coefficient of determination.

11.4.2 Using function vif(), from package car

After running a regression using built-in function lm(), we can use function vif() from package car, to easily
calculate the variance inflating factors. Remember in computer rooms on campus, package car is already
installed. The only thing you need to do is activate it, by either running command library or ticking on
the box next to the package name in the package tab (bottom right window). Example of how to use vif()
function:

library(car)

Loading required package: carData

Model1<-lm(wage~educ+exper, data=Wage_data)
vif(Model1)

educ exper
1.091404 1.091404

11.5 Multiple regression estimation: logs, polynomial forms, interaction terms
11.5.1 Regressions with variables in log form

Model(1) : log(wage) = β0 + β1log(educ) + β2exper + u

Model1<-lm(log(wage)~log(educ)+exper, data=Wage_data)
Model1

Call:
lm(formula = log(wage) ~ log(educ) + exper, data = Wage_data)

Coefficients:
(Intercept) log(educ) exper

1.56162 0.42834 0.01661

11.5.2 Regressions with variables polynomial forms

Model(2) : wage = β0 + β1educ+ β2exper + β3exper
2 + u

In this case, just define variable exper2 as a regressor. That is:

exper2<-Wage_data$exper^2
Model2<-lm(wage~educ+exper+exper2, data=Wage_data)
Model2

69

Call:
lm(formula = wage ~ educ + exper + exper2, data = Wage_data)

Coefficients:
(Intercept) educ exper exper2

-0.057261 1.932966 0.368841 -0.004435

Alternatively, you can avoid having to define exper2 using the I():

Model2<-lm(wage~educ+exper+I(exper^2), data=Wage_data)
Model2

Call:
lm(formula = wage ~ educ + exper + I(exper^2), data = Wage_data)

Coefficients:
(Intercept) educ exper I(exper^2)

-0.057261 1.932966 0.368841 -0.004435

11.5.3 Regressions with interaction terms

Model(3) : ln(wage) = β0 + β1educ+ β2exper + β3(educ · exper) + u

edex<-Wage_data$educ*Wage_data$exper
Model3<-lm(log(wage)~educ+exper+edex, data=Wage_data)
Model3

Call:
lm(formula = log(wage) ~ educ + exper + edex, data = Wage_data)

Coefficients:
(Intercept) educ exper edex

1.716558 0.101491 0.006283 0.003053

Alternatively, you can avoid having to define the interaction term by using the I(), again

Model3<-lm(log(wage)~educ+exper+I(educ*exper), data=Wage_data)
Model3

Call:
lm(formula = log(wage) ~ educ + exper + I(educ * exper), data = Wage_data)

Coefficients:
(Intercept) educ exper I(educ * exper)

1.716558 0.101491 0.006283 0.003053

70

12 Simulating behavior of OLS estimator
12.1 Generating a sample from a given data generating process dgp

Consider generating a sample of 30 observations from the following dgp:

yi = 10 + 1 · xi1 + 1 · xi2 + ui ui/X ∼ i.i.N(0, 81) xi1 ∼ U [0, 20] xi2 ∼ U [0, 20]

and then, estimating the following regression:

y = β0 + β1x1 + β2x2 + u

1
n<-30

2
set.seed(12345)
x1 <- runif(n, min=0, max=20)
x2 <- runif(n, min=0, max=20)
y <- 10+1*x1+1*x2+rnorm(n, 0, 9)

3
Model <- lm(y~x1+x2)
Model

Call:
lm(formula = y ~ x1 + x2)

Coefficients:
(Intercept) x1 x2

14.6368 1.0392 0.7641

12.2 Monte Carlo experiments

Consider generating many samples samples of the same size from a given data generating process (dgp). All
the parameters of the dgp need to be set. Example:

yi = 10 + 1 · xi1 + 1 · xi2 + ui ui/X ∼ i.i.N(0, 81) xi1 ∼ U [0, 20] xi2 ∼ U [0, 20],

With each each sample, we wish to estimate the following regression model:

y = β0 + β1x1 + β2x2 + u,

After each estimation, we want to save the estimates of each of our parameters, and creating a dataframe
that includes all the estimates.

The following R script generates 1,000 samples of 30 observations each:

71

Sample size
n<-30

Generating the values of the regressors (kept the same across samples)
set.seed(12345)
x1 <- runif(n, min=0, max=20)
x2 <- runif(n, min=0, max=20)
y <- 10+1*x1+1*x2+rnorm(n, 0, 9)

Number of samples we want to generate
nsim <- 1000
b0hat <- numeric(nsim)
b1hat <- numeric(nsim)
b2hat <- numeric(nsim)

Loop

for (i in 1:nsim){
set.seed(12345+i)
y <- 10+1*x1+1*x2+rnorm(n, 0, 9)
Model <- lm(y~x1+x2)
b0hat[i]<-Model$coefficients[1]
b1hat[i]<-Model$coefficients[2]
b2hat[i]<-Model$coefficients[3]

}

Creating a dataframe with our estimates from the 1000 samples
MC_data<-data.frame(b0hat,b1hat,b2hat)

• To produce a density histogram with the 1,000 OLS estimates of β1, for example, using function
ggplot(), from ggplot package:

library(ggplot2)
ggplot(MC_data, aes(x=b1hat)) +

geom_histogram(aes(y =..density..), col="black", fill="dodgerblue1") +
xlim(0,2)

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0
b1hat

de
ns

ity

72

13 Multiple regression model: inference
This section includes basic commands for inference based on OLS estimator using as example data file
Example.csv and regression model:

wage = β0 + β1educ+ β2exper + u

To begin with we need to read the data file, located in the working directory, and create dataframe named
Wage_data with it.

library(readr)
Wage_data<-read_csv(file="Example.csv")
names(Wage_data)

[1] "wage" "educ" "exper"

For inference we will need the statistical tables. In the case of the multiple regression model, the tables of the
t-distribution and the F -distribution will be needed. Please see Section 4.

13.1 Statistics for significance test of each regressor (t-values, p-values)
Please revise pages 42-43 for the case of the simple regression model. Example:

Model2<-lm(wage~educ+exper, data=Wage_data)
library(stargazer)
stargazer(Model2 , type = "text" , report="vcstp*")

===
Dependent variable:

wage

educ 1.930

(0.082)
t = 23.674

p = 0.000***

exper 0.201
(0.010)

t = 20.774
p = 0.000***

Constant 1.074
(0.373)

t = 2.881
p = 0.005***

Observations 1,472
R2 0.344
Adjusted R2 0.344
Residual Std. Error 3.606 (df = 1469)
F Statistic 386.018*** (df = 2; 1469)
===
Note: *p<0.1; **p<0.05; ***p<0.01

73

13.2 Confidence intervals
13.2.1 Confidence intervals using function confint()

Calculating the confidence interval (default=95% confidence level) for our regression parameters can be done
using function confint(). This function needs to be used after estimating a model using built-in function
lm(). Example:

Model2<-lm(wage~educ+exper , data=Wage_data)
confint(Model2)

2.5 % 97.5 %
(Intercept) 0.3426679 1.8048040
educ 1.7704305 2.0903198
exper 0.1817372 0.2196369

• Calculating the confidence interval changing the default 95% confidence level to, say, 99% confidence
level, can de done using option level. Example:

Model2<-lm(wage~educ+exper , data=Wage_data)
confint(Model2, level=.99)

0.5 % 99.5 %
(Intercept) 0.1124924 2.0349794
educ 1.7200722 2.1406781
exper 0.1757709 0.2256032

13.2.2 Confidence intervals using function lm() and stargazer() function

Recall, function stargazer() also allows us to calculate confidence intervals by including option ci.custom.

Model2<-lm(wage~educ+exper , data=Wage_data)
stargazer(Model2, ci.custom = list(confint(Model2)), type = "text")

===
Dependent variable:

wage

educ 1.930***

(1.770, 2.090)

exper 0.201***
(0.182, 0.220)

Constant 1.074***
(0.343, 1.805)

Observations 1,472
R2 0.344
Adjusted R2 0.344
Residual Std. Error 3.606 (df = 1469)
F Statistic 386.018*** (df = 2; 1469)
===

74

13.3 Inference with F statistic using function linearHypothesis()
This sub-section includes function linearHypothesis() from the car package. This function calculates the
F − value for any linear hypothesis we wish to test.

Important: You should be able to calculate the F-value from the expression of the F-statistic step by step
using previous commands (that is estimating the model we are testing, calculating SSR, estimating the
restricted model and calculating RSSE and then calculating the Fvalue.

13.3.1 Testing one restriction

• Significance test of a regressor. Example, testing significance of regressor educ:

Test : H0 : β1 = 0 vs H1 : β1 6= β2

Model2<-lm(wage~educ+exper , data=Wage_data)
library(car)
linearHypothesis(Model2, c("educ=0"))

Linear hypothesis test

Hypothesis:
educ = 0

Model 1: restricted model
Model 2: wage ~ educ + exper

Res.Df RSS Df Sum of Sq F Pr(>F)
1 1470 26386
2 1469 19099 1 7286.9 560.47 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Very important:

Notice that even if we are testing whether parameter β1 = 0 (proper way to state the null hypothesis of
regressor educ not being significant!), the way we enter this restriction into the function linearHy-
pothesis() implies writing educ = 0!!!!

This is very stardard in econometric software, but we should be aware of the proper way to write an
hypothesis. Hypothesis are about parameters, not about variables!!!

• Testing equality of two parameters. Example:

Test : H0 : β1 = β2 vs H1 : β1 6= β2

Model1<-lm(wage~educ+exper , data=Wage_data)
library(car)
linearHypothesis(Model1, c("educ=exper"))

75

Linear hypothesis test

Hypothesis:
educ - exper = 0

Model 1: restricted model
Model 2: wage ~ educ + exper

Res.Df RSS Df Sum of Sq F Pr(>F)
1 1470 25287
2 1469 19099 1 6188 475.95 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

13.3.2 Testing two restrictions

• Example:

Test : H0 : β1 = β2 = 0 vs H1 : not H0

Model1<-lm(wage~educ+exper , data=Wage_data)
library(car)
linearHypothesis(Model1, c("educ=0","exper=0"))

Linear hypothesis test

Hypothesis:
educ = 0
exper = 0

Model 1: restricted model
Model 2: wage ~ educ + exper

Res.Df RSS Df Sum of Sq F Pr(>F)
1 1471 29136
2 1469 19099 2 10037 386.02 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

76

14 Multiple regression model: prediction
14.1 Point prediction

model2 <- lm(wage~educ+exper , data=Wage_data)
predict(model2, newdata=data.frame(educ=c(5),exper=c(10)))

1
12.73248

14.2 Interval prediction

model1 <- lm(wage~educ, data=Wage_data)
predict(model1, data.frame(educ=c(5),exper=c(10)), interval="prediction")

fit lwr upr
1 13.38601 5.336038 21.43598

77

	Introduction to RStudio
	Installing RStudio
	RStudio layout
	R as a calculator
	R scripts
	RMarkdown documents

	Data objects: variables and dataframes
	Creating a variable by entering its values
	Creating a dataframe
	Importing data files
	Saving objects in the workspace as R data objects
	Basic data manipulation

	Simulating random variables
	Simulating a discrete random variable
	Simulating a continuos random variable

	Statistical tables
	Statistical tables: t-distribution
	Statistical tables: F-distribution

	Basic descriptive statistics
	Measures of location
	Measures of dispersion
	Measures of shape
	Measures of linear association

	Graphs using ggplot2 package
	Basic structure
	One variable plots: Histograms
	2 variable plots: Scatters

	Vectors and matrices in R
	Creating vectors and matrices using function matrix()
	Matrix Operations

	Simple regression model: OLS estimation
	OLS estimation
	OLS estimation using matrix algebra
	Coefficient of determination
	OLS estimation: standard errors
	OLS estimation using function lm()
	Plotting observations and fitted line

	Simple regression model: inference with t statistic
	Significance test of each regressor (t-values, p-values, \ast)
	Confidence intervals

	Simple regression model: prediction
	Point prediction
	Interval prediction

	Multiple regression model: estimation
	OLS estimation
	Googness of fit
	OLS estimation using function lm()
	Calculating variance inflating factors
	Multiple regression estimation: logs, polynomial forms, interaction terms

	Simulating behavior of OLS estimator
	Generating a sample from a given data generating process dgp
	Monte Carlo experiments

	Multiple regression model: inference
	Statistics for significance test of each regressor (t-values, p-values)
	Confidence intervals
	Inference with F statistic using function linearHypothesis()

	Multiple regression model: prediction
	Point prediction
	Interval prediction

